Skip to main content
Log in

Bioinspired synthesis of nickel oxide nanoparticles as electrode material for supercapacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nickel oxide nanoparticles (NiO NPs) were synthesized by adopting green route with a nontoxic aqueous phytoextract of guava leaves for their application as supercapacitor electrodes. The characteristic UV absorption peak for NiO NPS was observed at 266 nm. X-ray diffraction (X-RD) study confirms the crystalline nature of biosynthesized nanoparticles with cubic face-centered crystal structure. Coral-like shape of nanostructures of NiO is demonstrated by scanning electron microscopy (SEM). Biosynthesized NiO nanoparticles are further characterized using Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and differential thermal analysis (DTA). The electrochemical properties and cycle performance of supercapacitor device using NiO nanoparticles as electrode material were investigated by cyclic voltammetry with different concentrations of aqueous potassium hydroxide (KOH) electrolyte. The NiO NPs electrode exhibited specific capacitance of 85.31 F/g in the potential window of 0.8 V at the scan rate 2 mV/s with 5 M KOH electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Maksoud MIAA, Fahim RA, Shalan AE, Elkodous MA, Olojede SO, Osman AI, Farrell C, Al-Muhtaseb AH, Awed AS, Ashour AH, Rooney David W (2021) Advanced materials and technologies for supercapacitors used in energy conversion and storage. Environ Chem Lett 19:375–439

    Article  Google Scholar 

  2. Miao L, Song Z, Zhu D, Li L, Gan L, Liu Mingxian (2020) Recent advances in carbon-based supercapacitors. Mater. Adv. 1:945–966

    Article  CAS  Google Scholar 

  3. Razaa W, Alib F, Razac N, Luoa Y, Kimf KH, Yanga J, Kumare S, Mehmooda A, Kwond EE (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473

    Article  Google Scholar 

  4. Sung J, Shin C (2020) Recent studies on supercapacitors with next-generation structures. Micromachines 11:1125

    Article  Google Scholar 

  5. Yus J, Ferrari B, Herencia AS, Caballero A, Morales J, Gonzalez Z (2017) In situ synthesis and electrophoretic deposition of NiO/Ni core-shell nanoparticles and its application as pseudocapacitor. Coatings 7:193

    Article  Google Scholar 

  6. Yu X, Yun S, Yeon JS, Bhattacharya P, Wang L, Lee SW, Hu X, Park HS (2018) Emergent pseudocapacitance of 2D nanomaterials. Adv Energy Mater 8(13):1702930

    Article  Google Scholar 

  7. Feng L, Zhu Y, Ding H, Ni C (2014) Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources 267:430–444

    Article  CAS  Google Scholar 

  8. Wu S, Hui K, Hui K, Kim KH (2016) Ultrathin porous NiO nanoflake arrays on nickel foam as an advanced electrode for high performance asymmetric supercapacitors. J Mater Chem A 4(23):9113–9123

    Article  CAS  Google Scholar 

  9. Zorkipli NNM, Mohdkaus NH, Mohamad AA (2016) Synthesis of NiO nanoparticles through sol-gel method. Procedia Chem 19:626–631

    Article  CAS  Google Scholar 

  10. Sone BT, Fuku XG, Maaza M (2016) Green synthesis of NiO nanoparticles using Callistemon viminalis extracts & their potential for pseudocapacitor applications. Int J Electrochem Sci 11:8204–8220

    Article  CAS  Google Scholar 

  11. Dhas SD, Maldar PS, Patil MD, Nagar AB, Waikar MR, Sonkawade RG, Moholkar AV (2020) Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode materials. Vacuum 181:109646

    Article  CAS  Google Scholar 

  12. .E Chen, ZN. Yu, YG Chen, LQ Luo, X Wang (2011) Preparation of NiO nanoparticles as supercapacitor electrode by precipitation using carbon black powder, https://doi.org/10.1109/ICMREE 5930892

  13. Nguyen K, Hoa ND, Hung CM, Le DTT, Duy NV, Hieu NV (2018) A comparative study on the electrochemical properties of nanoporous nickel oxide nanowires and nanosheets prepared by a hydrothermal method. RSC Adv 8:19449

    Article  CAS  Google Scholar 

  14. Chatterjee S, Maiti R, Miah M, Saha SK, Chakravorty D (2017) NiO nanoparticle synthesis using a triblock copolymer: enhanced magnetization and high specific capacitance of electrodes prepared from the powder. ACS Omega 2:283–289

    Article  CAS  Google Scholar 

  15. Ahamed AJ, Kumar PV, Karthikeyan M (2015) Wet chemical synthesis and characterization of NiO nanoparticles. Int J Nano Corr Sci Engg 2(5):31–38

    Google Scholar 

  16. Kemary ME, Nagy N, Mehasseb IE (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752

    Article  Google Scholar 

  17. Kayani ZN, Butt MZ, Riaz S, Naseem S (2018) Synthesis of NiO nanoparticles by sol-gel technique. Mater Sci-Pol 36(4):547–552

    Article  CAS  Google Scholar 

  18. Zheng YZ, Ding HY, Zheng ML (2009) Preparation and electrochemical properties of nickel oxide as a supercapacitor electrode material. Mater Res Bull 44(2):403–407

    Article  CAS  Google Scholar 

  19. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Kennedy LJ, Ramalingam RJ, Al-Lohedan HA (2018) Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. J Photochem Photobiol, B 180:39–50

    Article  Google Scholar 

  20. Haider A, Ijaz M, Ali S, Haider J, Imran M, Majeed H, Shazadi I, Ali MM, Khan JA, Ikram M (2020) Green synthesized phytochemically (Zingiber officinale and Allium sativum) reduced nickel oxide nanoparticles confirmed bacterial and catalytic potential. Nanoscale Res Lett 15:50

    Article  CAS  Google Scholar 

  21. Wardani M, Yulizar Y, Abdullah I, Apriandanu DOB (2019) Synthesis of NiO nanoparticles via green route using Ageratum conyzoides L. leaf extract and their catalytic activity. Mater. Sci. Eng. 509:012077

    CAS  Google Scholar 

  22. Kganyago P, Mahlaule Glory LM, Mathipa MM, Ntsendwana B, Mketo N, Mbita Z, Hintsho Mbita NC (2018) Synthesis of Nio nanoparticles via a green route using Monsonia burkeana: the physical and biological properties. J Photochem Photobiol B: Biol 182:18–26

    Article  CAS  Google Scholar 

  23. P. Vijaya Kumar, A. J. Ahamed, M. Karthikeyan (2019) Synthesis and characterization of NiO nanoparticles by chemical as well as green routes and their comparisons with respect to cytotoxic effect and toxicity studies in microbial and MCF-7 cancer cell models, SN Applied Sciences

  24. Sadhukhan S, Bhattacharyya A, Rana D, Ghosh TK, Orasugh JT, Khatua S, Acharya K, Chattopadhyay D (2020) Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater Chem Phys 247:122906

    Article  CAS  Google Scholar 

  25. Somchaidee P, Tedsree K (2018) Green synthesis of high dispersion and narrow size distribution of zero valent iron nanoparticles using guava leaf (Psidium guajava L) extract. Adv. Nat. Sci.: Nanosci. Nanotechnol. 9:035006

    Google Scholar 

  26. Carbone M, Missori M, Micheli L, Tagliatesta P, Bauer EM (2020) NiO pseudocapacitance and optical properties: does the shape win? Materials 13:1417

    Article  CAS  Google Scholar 

  27. Kundu M, Karunakaran G, Kuznetsov D (2017) Green synthesis of NiO nanostructured materials using Hydrangea paniculata flower extracts and their efficient application as supercapacitor electrodes. Power Technology 311:132–136

    Article  CAS  Google Scholar 

  28. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol, Monit Manag 9:29–36

    Google Scholar 

  29. Jenkins R, Snyder LR (1996) Introduction to X-ray powder diffractometry. John Wiley & Sons, New Jersey

    Book  Google Scholar 

  30. Aytan E, Debnath B, Kargar F, Barlas Y, Lacerda M, Li J, Lake R, Shi J, Balandin A (2017) Spin-phonon coupling in antiferromagnetic nickel oxide. Appl. Phys. Lett. 111:252402

    Article  Google Scholar 

  31. Salunkhe P, AliAV M, Kekuda D (2020) Investigation on tailoring physical properties of nickel oxide thin films grown by dc magnetron sputtering. Mater. Res. Express 7:016427

    Article  CAS  Google Scholar 

  32. Xu J, Wua L, Liu Y, Zhang J, Liu J, Shu S, Kang X, Song Q, Liu D, Huang F, Hu Y (2020) NiO-rGO composite for supercapacitor electrode. Surfaces and Interfaces 18:100420

    Article  CAS  Google Scholar 

  33. Wen W, Wu JM, Lai LL, Ling GP, Cao MH (2012) Hydrothermal synthesis of needle-like hyperbranched Ni(SO4)0.3(OH)1.4 bundles and their morphology-retentive decompositions to NiO for lithium storage. Cryst. Eng. Comm. 14:6565–6572

    Article  CAS  Google Scholar 

  34. Feng X, Zhou J, Wang Y, Huang Z, Chen S (2015) Synthesis of shape controlled NiO graphene nanocomposites with enhanced supercapacitive properties. New J Chem 39:4026–4034

    Article  CAS  Google Scholar 

  35. Huang ML, Gu CD, Ge X, Wang XL, Tu JP (2014) NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J Power Sources 259:98–105

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yogesh Kumar or Meenal Gupta.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamba, P., Singh, P., Singh, P. et al. Bioinspired synthesis of nickel oxide nanoparticles as electrode material for supercapacitor applications. Ionics 27, 5263–5276 (2021). https://doi.org/10.1007/s11581-021-04245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04245-0

Keywords

Navigation