Skip to main content

Advertisement

Log in

A bimetallic oxide NiMnO3 with perovskite structured as a high-performance cathode for zinc ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Rechargeable aqueous zinc ion batteries (ZIBs) are considered as one of the most promising candidates for large-scale energy storage due to their high safety, environmental benignity, and low cost. Developing cathode materials with high specific capacity and long cycle performance is the key to the commercialization of ZIBs. In this work, a perovskite structured bimetallic oxide (NiMnO3) was synthesized and firstly used as cathode for ZIBs. Electrochemical tests show that the NiMnO3 exhibits a high capacity (280 mA h g−1 at 300 mA g−1), good cycling stability, and rate performance (152 mA h g−1 at 1000 mA g−1). The fast ion transportation and the significant capacitance contribution should be the reasons for remarkable rate performance. The zinc storage mechanism of NiMnO3 is the insertion and extraction reaction and the formation/dissolution of ZHS (ZnSO4·3Zn(OH)2·5H2O). The results suggest that the bimetallic oxide with perovskite structure could be a promising cathode material for ZIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao J, Xie X, Liang S, Lu B, Zhou J (2021) Inorganic colloidal electrolyte for highly robust zinc-ion batteries. Nanomicro Lett 13(1):69

    PubMed  PubMed Central  Google Scholar 

  2. Huang J, Zhou J, Liang S (2020) Guest pre-intercalation strategy to boost the electrochemical performance of aqueous zinc-ion battery cathodes. Acta Phys -Chim Sin 37(3):2005020

    Article  Google Scholar 

  3. Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P (2012) Rechargeable hybrid aqueous batteries. J Power Sources 216:222–226

    Article  CAS  Google Scholar 

  4. Yang P, Sun P, Mai W (2016) Electrochromic energy storage devices. Mater Today 19(7):394–402

    Article  CAS  Google Scholar 

  5. Yang Z, Zhang J, Kintner-Meyer MC, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Article  CAS  Google Scholar 

  6. Yong B, Ma D, Wang Y, Mi H, He C, Zhang P (2020) Understanding the design principles of advanced aqueous zinc-ion battery cathodes: from transport kinetics to structural engineering, and future perspectives. Adv Energy Mater 10(45):2002354

    Article  CAS  Google Scholar 

  7. Zhao P, Yang B, Chen J, Lang J, Zhang T, Yan X (2020) A safe, high-performance, and long-cycle life zinc-ion hybrid capacitor based on three-dimensional porous activated carbon. Acta Phys-Chim Sin 36(2):1904050

    Article  Google Scholar 

  8. Dinesh S, Anqiang P, Shuquan L, Guozhong C (2019) A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J Mater Chem A. https://doi.org/10.1039/c9ta05053a

  9. Blanc EL, Kundu D, Nazar FL (2020) Scientific challenges for the implementation of Zn-Ion batteries. Joule 4(4):771–799

    Article  CAS  Google Scholar 

  10. Ming J, Guo J, Xia C, Wang W, Alshareef HN (2019) Zinc-ion batteries: materials, mechanisms, and applications. Mater Sci Eng R 135:58–84

    Article  Google Scholar 

  11. Wan F, Niu Z (2019) Design strategies for vanadium-based aqueous zinc-ion batteries. Angew Chem Int Ed 58(46):16358–16367

    Article  Google Scholar 

  12. Xu D, Wang H, Li F, Guan Z, Wang R, He B, Gong Y, Hu X (2019) Conformal conducting polymer shells on V2O5 nanosheet arrays as a high-rate and stable zinc-ion battery cathode. Adv Mater Interfaces 6(2):1801506

    Article  Google Scholar 

  13. Deng Z, Huang J, Liu J, Ren L, Zhu L, Xiao X, Tan M (2019) β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-ife. Mater Lett 248:207–210

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhu Y, Zhang X (2019) Challenges and perspectives for manganese-based oxides for advanced aqueous zinc-ion batteries. InfoMat 2(2):237–260

    Article  Google Scholar 

  15. Zhu C, Fang G, Zhou J, Guo J, Wang Z, Wang C, Li J, Tang Y, Liang S (2018) Binder-free stainless steel@Mn3O4 nanoflower composite: a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life. J Mater Chem A 6(20):9677–9683

    Article  CAS  Google Scholar 

  16. Cheng Y, Luo L, Zhong L, Chen J, Li B, Wang W, Mao SX, Wang C, Sprenkle VL, Li G, Liu J (2016) Highly reversible zinc-ion intercalation into chevrel phase Mo6S8 nanocubes and applications for advanced zinc-ion batteries. ACS Appl Mater Interfaces 8(22):13673–13677

    Article  CAS  Google Scholar 

  17. Xiong T, Wang Y, Yin B, Shi W, Lee WSV, Xue J (2019) Bi2S3 for aqueous Zn ion battery with enhanced cycle stability. Nanomicro Lett 12(1):1–9

    CAS  Google Scholar 

  18. Xu W, Sun C, Zhao K, Cheng X, Rawal S, Xu Y, Wang Y (2019) Defect engineering activating (boosting) zinc storage capacity of MoS2. Energy Stor Mater 16:527–534

    Article  Google Scholar 

  19. Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5(1):1–9

    Article  Google Scholar 

  20. Wei T, Li Q, Yang G, Wang C (2018) An electrochemically induced bilayered structure facilitates long-life zinc storage of vanadium dioxide. J Mater Chem A 6(17):8006–8012

    Article  CAS  Google Scholar 

  21. Trocoli R, La Mantia F (2015) An aqueous zinc-ion battery based on copper hexacyanoferrate. Chemsuschem 8(3):481–485

    Article  CAS  Google Scholar 

  22. Altug SP, Josh L, Zeljka Z (2019) Improving the cycle life of cryptomelane type manganese dioxides in aqueous rechargeable zinc ion batteries: the effect of electrolyte concentration. Electrochim Acta 305:423–432

    Article  Google Scholar 

  23. Guo C, Liu H, Li J, Hou Z, Liang J, Zhou J, Zhu Y, Qian Y (2019) Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim Acta 304:370–377

    Article  CAS  Google Scholar 

  24. Islam S, Alfaruqi MH, Mathew V, Song J, Kim S, Kim S, Jo J, Baboo JP, Pham DT, Putro DY, Sun Y-K, Kim J (2017) Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J Mater Chem A 5(44):23299–23309

    Article  CAS  Google Scholar 

  25. Jiang B, Xu C, Wu C, Dong L, Li J, Kang F (2017) Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim Acta 229:422–428

    Article  CAS  Google Scholar 

  26. Hao J, Mou J, Zhang J, Dong L, Liu W, Xu C, Kang F (2017) Electrochemically induced spinel-layered phase transition of Mn3O4 in high performance neutral aqueous rechargeable zinc battery. Electrochim Acta 259:170–178

    Article  Google Scholar 

  27. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J (2016) Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat Energy 1(5):1–7

    Article  Google Scholar 

  28. Wu X, Xiang Y, Peng Q, Wu X, Li Y, Tang F, Song R, Liu Z, He Z, Wu X (2017) Green-low-cost rechargeable aqueous zinc-ion batteries using hollow porous spinel ZnMn2O4 as the cathode material. J Mater Chem A 5(34):17990–17997

    Article  CAS  Google Scholar 

  29. Zhang H, Wang J, Liu Q, He W, Lai Z, Zhang X, Yu M, Tong Y, Lu X (2019) Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Stor Mater 21:154–161

    Article  Google Scholar 

  30. Zeng Y, Lai Z, Han Y, Zhang H, Xie S, Lu X (2018) Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ion batteries. Adv Mater 30(33):1802396

    Article  Google Scholar 

  31. Lee JW, Seo SD, Kim DW (2019) Comparative study on ternary spinel cathode Zn-Mn-O microspheres for aqueous rechargeable zinc-ion batteries. J Alloys Compd 800:478–482

    Article  CAS  Google Scholar 

  32. Wu X, Li Y, Li C, He Z, Xiang Y, Xiong L, Chen D, Yu Y, Sun K, He Z, Chen P (2015) The electrochemical performance improvement of LiMn2O4/Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. J Power Sources 300:453–459

    Article  CAS  Google Scholar 

  33. Chen L, Yang Z, Wu J, Chen H, Meng J (2020) Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2·2H2O cathode for aqueous zinc ion batteries. Electrochim Acta 330:135347

    Article  CAS  Google Scholar 

  34. Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X (2019) The excellent electrochemical performances of ZnMn2O4/Mn2O3: the composite cathode material for potential aqueous zinc ion batteries. J Electroanla Chen 832:69–74

    Article  CAS  Google Scholar 

  35. Zhang N, Cheng F, Liu Y, Zhao Q, Lei K, Chen C, Liu X, Chen J (2016) Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J Am Chem Soc 138(39):12894–12901

    Article  CAS  Google Scholar 

  36. Meagan P, Vladan S, Andriy Z, Ryan OH (2020) Triple ionic-electronic conducting oxides for next-generation electrochemical devices. Nat Mater 20:1–13

    Google Scholar 

  37. Qiao S, Huang N, Sun Y, Zhang J, Zhang Y, Gao Z (2019) Microwave-assisted synthesis of novel 3D flower-like NiMnO3 nanoballs as electrode material for high-performance supercapacitors. J Alloys Compd 775:1109–1116

    Article  CAS  Google Scholar 

  38. Chen L, Yang Z, Qin H, Zeng X, Meng J (2019) Advanced electrochemical performance of ZnMn2O4/N-doped graphene hybrid as cathode material for zinc ion battery. J Power Sources 425:162–169

    Article  CAS  Google Scholar 

  39. Yang G, Wang C (2020) Platinum-induced pseudo-Zn-Air reaction massively increases the electrochemical capacity of aqueous Zn/V5O12·6H2O batteries. Energy Environ Mater 1–7

  40. Wu B, Qi S, Wu X, Wang H, Zhuang Q, Yi H, Xu P, Xiong Z, Shi G, Chen S, Wang B (2021) FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2021.03.014

  41. Yuan G, Geng M, Zhang P, Li B (2020) Hybrids of LiMn2O4 nanoparticles anchored on carbon nanotubes/graphene sheets as long-cycle-life cathode material for rechargeable hybrid aqueous batteries. J Solid State Electr 24(3):601–607

    Article  CAS  Google Scholar 

  42. Zhang T, Tang Y, Fang G, Zhang C, Zhang H, Guo X, Cao X, Zhou J, Pan A, Liang S (2020) Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte. Adv Funct Mater 30(30):2002711

    Article  CAS  Google Scholar 

  43. Liu Y, Li Q, Ma K, Yang G, Wang C (2019) Graphene oxide wrapped CuV2O6 nanobelts as high-capacity and long-life cathode materials of aqueous zinc-ion batteries. ACS Nano 13(10):12081–12089

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 22075173) and the Science and Technology Commission of Shanghai Municipality (No. 19DZ2271100 and No.21010501100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qigang Wang or Baofeng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 476 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, Q., Wu, B., Wang, H. et al. A bimetallic oxide NiMnO3 with perovskite structured as a high-performance cathode for zinc ion batteries. Ionics 27, 4811–4818 (2021). https://doi.org/10.1007/s11581-021-04232-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04232-5

Keywords

Navigation