Skip to main content
Log in

Efficient rhodamine B degradation and stable electricity generation performance of visible-light photocatalytic fuel cell with g-C3N4/WO3/TiO2/Ti photoanode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The performance of photocatalytic fuel cell (PFC) is mainly determined by photoanode. In order to reduce the recombination rate of electron–hole pairs and extend the light response wavelength, g-C3N4/WO3/TiO2/Ti photoanode was successfully fabricated by mixed sol–gel dipping method. Its maximum photocurrent density is 2.27 mA·cm−2 at 1.1 V (vs. SCE), which is 1.64 and 1.57 times that of WO3/TiO2/Ti and g-C3N4/TiO2/Ti, respectively. The maximum power density, short circuit current density, and RhB degradation efficiency of PFC with g-C3N4/WO3/TiO2/Ti-Cu photoanode and Cu cathode are 19.35 μW·cm−2, 0.20 mA·cm−2, and 87.7%, respectively. The excellent performance of PFC is mainly attributed to the fact that TiO2/Ti is co-doped with g-C3N4 and WO3, which greatly expands its light absorption range, strengthen its light absorption intensity, and improves its carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. Lam SM, Sin JC, Lin H, Li H, Zeng H (2020) Greywater and bacteria removal with synchronized energy production in photocatalytic fuel cell based on anodic TiO2/ZnO/Zn and cathodic CuO/Cu. Chemosphere 245:125565. https://doi.org/10.1016/j.chemosphere.2019.125565

    Article  CAS  PubMed  Google Scholar 

  2. Bai J, Wang R, Li Y, Tang Y, Zeng Q, Xia L, Li X, Li J, Li C, Zhou B (2016) A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J Hazard Mater 311:51–62. https://doi.org/10.1016/j.jhazmat.2016.02.052

    Article  CAS  PubMed  Google Scholar 

  3. Ouyang K, Xie S, Wang P, Zhu J, Zhan P (2019) A novel visible-light responsive photocatalytic fuel cell with a highly efficient BiVO4/WO3 inverse opal photoanode and a MnO2/graphene oxide nanocomposite modified cathode. Int J Hydrogen Energy 44:7288–7299. https://doi.org/10.1016/j.ijhydene.2019.01.241

    Article  CAS  Google Scholar 

  4. Liu Y, Liu L, Yang F (2016) Energy-efficient degradation of rhodamine B in a LED illuminated photocatalytic fuel cell with anodic Ag/AgCl/GO and cathodic ZnIn2S4 catalysts. RSC Adv 6:12068–12075. https://doi.org/10.1039/c5ra25557k

    Article  CAS  Google Scholar 

  5. Kaneko M, Nemoto J, Ueno H, Gokan N, Ohnuki K, Horikawa M, Saito R, Shibata T (2006) Photoelectrochemical reaction of biomass and bio-related compounds with nanoporous TiO2 film photoanode and O2-reducing cathode. Electrochem Commun 8:336–340. https://doi.org/10.1016/j.elecom.2005.12.004

    Article  CAS  Google Scholar 

  6. Antoniadou M, Lianos P (2010) Production of electricity by photoelectrochemical oxidation of ethanol in a PhotoFuelCell. Appl Catal B 99:307–313. https://doi.org/10.1016/j.apcatb.2010.06.037

    Article  CAS  Google Scholar 

  7. Zeng Q, Bai J, Li J, Li L, Xia L, Zhou B, Sun Y (2018) Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatment. Appl Energy 220:127–137. https://doi.org/10.1016/j.apenergy.2018.03.042

    Article  CAS  Google Scholar 

  8. Liu W, Huang S, Zhou A, Zhou G, Ren N, Wang A, Zhuang G (2012) Hydrogen generation in microbial electrolysis cell feeding with fermentation liquid of waste activated sludge. Int J Hydrogen Energy 37:13859–13864. https://doi.org/10.1016/j.ijhydene.2012.04.090

    Article  CAS  Google Scholar 

  9. Deng B, Fu S, Zhang Y, Wang Y, Ma D, Dong S (2018) Simultaneous pollutant degradation and power generation in visible-light responsive photocatalytic fuel cell with an Ag-TiO2 loaded photoanode. Nano-Struct Nano-Objects 15:167–172. https://doi.org/10.1016/j.nanoso.2017.09.011

    Article  CAS  Google Scholar 

  10. Lu L, Jiang T, Jing W-s, Zhou G-w, Shi H-x (2018) A visible light responsive photocatalytic fuel cell using BiOBr/TiO2 nanotube array photoanode for simultaneous wastewater treatment and electricity generation. Chem Lett 47:613–616. https://doi.org/10.1246/cl.180080

    Article  CAS  Google Scholar 

  11. Irie H, Mori H, Hashimoto K (2004) Interfacial structure dependence of layered TiO2/WO3 thin films on the photoinduced hydrophilic property. Vacuum 74:625–629. https://doi.org/10.1016/j.vacuum.2004.01.036

    Article  CAS  Google Scholar 

  12. Luan P, Xie M, Fu X, Qu Y, Sun X, Jing L (2015) Improved photoactivity of TiO2-Fe2O3 nanocomposites for visible-light water splitting after phosphate bridging and its mechanism. Phys Chem Chem Phys 17:5043–5050. https://doi.org/10.1039/c4cp04631e

    Article  CAS  PubMed  Google Scholar 

  13. Liu Y, Xu Y, Zhong D, Yao H, Zeng Y, Zhong N, Luo H (2021) BiVO4@PDA/TiO2/Ti photoanode with polydopamine as electron transfer mediator for efficient visible-light driven photocatalytic fuel cell.Colloids Surf A: Physicochem Eng Asp 612:125941. https://doi.org/10.1016/j.colsurfa.2020.125941

  14. Liu Y, Xu Y, Zhong D, Zhong N (2021) Visible-light photocatalytic fuel cell with BiVO4/UiO-66/TiO2/Ti photoanode efficient degradation of Rhodamine B and stable generation of electricity. Chem Phys 542:111053. https://doi.org/10.1016/j.chemphys.2020.111053

  15. Liu Y, Xu Y, Zhong D, Zhong N, Luo H (2021) Core-shell BiVO4@Polythiophene co-modified TiO2 as an efficient photoanode for visible-light responsive photocatalytic fuel cell. Opt Mater 111:110563. https://doi.org/10.1016/j.optmat.2020.110563

  16. El-Yazeed WSA, Ahmed AI (2019) Photocatalytic activity of mesoporous WO3/TiO2 nanocomposites for the photodegradation of methylene blue. Inorg Chem Commun 105:102–111. https://doi.org/10.1016/j.inoche.2019.04.034

    Article  CAS  Google Scholar 

  17. Baia L, Orbán E, Fodor S, Hampel B, Kedves EZ, Saszet K, Székely I, Karácsonyi É, Réti B, Berki P et al (2016) Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors’ surface charge. Mater Sci Semicond Process 42:66–71. https://doi.org/10.1016/j.mssp.2015.08.042

    Article  CAS  Google Scholar 

  18. Hunge YM, Mahadik MA, Moholkar AV, Bhosale CH (2017) Photoelectrocatalytic degradation of oxalic acid using WO3 and stratified WO3/TiO2 photocatalysts under sunlight illumination. Ultrason Sonochem 35:233–242. https://doi.org/10.1016/j.ultsonch.2016.09.024

    Article  CAS  PubMed  Google Scholar 

  19. Palmas S, Castresana PA, Mais L, Vacca A, Mascia M, Ricci PC (2016) TiO2–WO3 nanostructured systems for photoelectrochemical applications. RSC Adv 6:101671–101682. https://doi.org/10.1039/c6ra18649a

    Article  CAS  Google Scholar 

  20. Rhaman MM, Ganguli S, Bera S, Rawal SB, Chakraborty AK (2020) Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway.J Water Process Eng 36:101256. https://doi.org/10.1016/j.jwpe.2020.101256

  21. Dozzi MV, Marzorati S, Longhi M, Coduri M, Artiglia L, Selli E (2016) Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency. Appl Catal B 186:157–165. https://doi.org/10.1016/j.apcatb.2016.01.004

    Article  CAS  Google Scholar 

  22. Ki SJ, Park Y-K, Kim J-S, Lee W-J, Lee H, Jung S-C (2019) Facile preparation of tungsten oxide doped TiO2 photocatalysts using liquid phase plasma process for enhanced degradation of diethyl phthalate.Chem Eng J 377:120087. https://doi.org/10.1016/j.cej.2018.10.024

  23. Kaplan SS, Sonmez MS (2020) Single step solution combustion synthesis of hexagonal WO3 powders as visible light photocatalysts.Mater Chem Phys 240:122152. https://doi.org/10.1016/j.matchemphys.2019.122152

  24. DohĿeviĿ-MitroviĿ Z, StojadinoviĿ S, Lozzi L, AškrabiĿ S, RosiĿ M, TomiĿ N, PaunoviĿ N, LazoviĿ S, NikoliĿ MG, Santucci S (2016) WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Mater Res Bull 83:217–224. https://doi.org/10.1016/j.materresbull.2016.06.011

    Article  CAS  Google Scholar 

  25. Pirzada BM, Mehraj O, Bhat SA, Sabir S (2018) Efficient visible-light-driven photocatalytic activity and enhanced charge transfer properties over Mo-doped WO3/TiO2 nanocomposites. J Environ Chem Eng 6:3204–3212. https://doi.org/10.1016/j.jece.2018.05.004

    Article  CAS  Google Scholar 

  26. Habibi-Yangjeh A, Mousavi M (2018) Deposition of CuWO4 nanoparticles over g-C3N4/Fe3O4 nanocomposite: novel magnetic photocatalysts with drastically enhanced performance under visible-light. Adv Powder Technol 29:1379–1392. https://doi.org/10.1016/j.apt.2018.02.034

    Article  CAS  Google Scholar 

  27. Jia J, Jiang C, Zhang X, Li P, Xiong J, Zhang Z, Wu T, Wang Y (2019) Urea-modified carbon quantum dots as electron mediator decorated g-C3N4/WO3 with enhanced visible-light photocatalytic activity and mechanism insight.Appl Surf Sci 495:143524. https://doi.org/10.1016/j.apsusc.2019.07.266

  28. Sano T, Sato H, Hori T, Hirakawa T, Teramoto Y, Koike K (2019) Effects of polymeric- and electronic-structure of graphitic carbon nitride (g-C3N4) on oxidative photocatalysis.Mol Catal 474:110451. https://doi.org/10.1016/j.mcat.2019.110451

  29. Kroke E, Schwarz M, Horath-Bordon E, Kroll P, Noll B, Norman AD (2002) Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation. New J Chem 26:508–512. https://doi.org/10.1039/b111062b

    Article  CAS  Google Scholar 

  30. Yu T, Liu L, Yang F (2017) Heterojunction between anodic TiO2/g-C3N4 and cathodic WO3/W nano-catalysts for coupled pollutant removal in a self-biased system. Chin J Catal 38:270–277. https://doi.org/10.1016/s1872-2067(16)62556-1

    Article  CAS  Google Scholar 

  31. Rabé K, Liu L, Nahyoon NA, Zhang Y, Idris AM (2019) Visible-light photocatalytic fuel cell with Z-scheme g-C3N4/Fe0/TiO2 anode and WO3 cathode efficiently degrades berberine chloride and stably generates electricity. Sep Purif Technol 212:774–782. https://doi.org/10.1016/j.seppur.2018.11.089

    Article  CAS  Google Scholar 

  32. Rabe K, Liu L, Nahyoon NA (2020) Electricity generation in fuel cell with light and without light and decomposition of tetracycline hydrochloride using g-C3N4/Fe0(1%)/TiO2 anode and WO3 cathode. Chemosphere 243:125425. https://doi.org/10.1016/j.chemosphere.2019.125425

    Article  CAS  PubMed  Google Scholar 

  33. Verma S, Nasir Baig RB, Nadagouda MN, Varma RS (2016) Photocatalytic C-H activation of hydrocarbons over VO@g-C3N4. ACS Sustain Chem Eng 4:2333–2336. https://doi.org/10.1021/acssuschemeng.6b00006

    Article  CAS  Google Scholar 

  34. He G-H, He G-L, Li A-J, Li X, Wang X-J, Fang Y-P, Xu Y-H (2014) Synthesis and visible light photocatalytic behavior of WO3(core)/Bi2WO6(shell). J Mol Catal A: Chem 385:106–111. https://doi.org/10.1016/j.molcata.2014.01.022

    Article  CAS  Google Scholar 

  35. Wu Y, Tao L, Zhao J, Yue X, Deng W, Li Y, Wang C (2015) TiO2/g-C3N4 nanosheets hybrid photocatalyst with enhanced photocatalytic activity under visible light irradiation. Res Chem Intermed 42:3609–3624. https://doi.org/10.1007/s11164-015-2234-8

    Article  CAS  Google Scholar 

  36. Zheng JY, Song G, Hong J, Van TK, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS (2014) Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des 14:6057–6066. https://doi.org/10.1021/cg5012154

    Article  CAS  Google Scholar 

  37. Gu L, Wang J, Zou Z, Han X (2014) Graphitic-C3N4-hybridized TiO2 nanosheets with reactive 001 facets to enhance the UV- and visible-light photocatalytic activity. J Hazard Mater 268:216–223. https://doi.org/10.1016/j.jhazmat.2014.01.021

    Article  CAS  PubMed  Google Scholar 

  38. Chai B, Peng T, Mao J, Li K, Zan L (2012) Graphitic carbon nitride (g-C3N4)-Pt-TiO2 nanocomposite as an efficient photocatalyst for hydrogen production under visible light irradiation. Phys Chem Chem Phys 14:16745–16752. https://doi.org/10.1039/c2cp42484c

    Article  CAS  PubMed  Google Scholar 

  39. Yang Y, Geng L, Guo Y, Meng J, Guo Y (2017) Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C3N4 nanosheets. Appl Surf Sci 425:535–546. https://doi.org/10.1016/j.apsusc.2017.06.323

    Article  CAS  Google Scholar 

  40. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun (Camb) 48:12017–12019. https://doi.org/10.1039/c2cc35862j

    Article  CAS  Google Scholar 

  41. Liu J, Zhang T, Wang Z, Dawson G, Chen W (2011) Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity.J Mater Chem 21:14398- 14401.https://doi.org/10.1039/c1jm12620b

  42. Huang L, Xu H, Li Y, Li H, Cheng X, Xia J, Xu Y, Cai G (2013) Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans 42:8606–8616. https://doi.org/10.1039/c3dt00115f

    Article  CAS  PubMed  Google Scholar 

  43. He K, Xie J, Luo X, Wen J, Ma S, Li X, Fang Y, Zhang X (2017) Enhanced visible light photocatalytic H2 production over Z-scheme g-C3N4 nansheets/WO3 nanorods nanocomposites loaded with Ni(OH)X cocatalysts. Chin J Catal 38:240–252. https://doi.org/10.1016/s1872-2067(17)62759-1

  44. Shafafi S, Habibi-Yangjeh A, Feizpoor S, Ghosh S, Maiyalagan T (2020) Carbon dots and Bi4O5Br2 adhered on TiO2 nanoparticles: impressively boosted photocatalytic efficiency for removal of pollutants under visible light. Sep Purif Technol 250:117179. https://doi.org/10.1016/j.seppur.2020.117179

  45. Norouzi A, Nezamzadeh-Ejhieh A, Fazaeli R (2021) A Copper(I) oxide-zinc oxide nano-catalyst hybrid: brief characterization and study of the kinetic of its photodegradation and photomineralization activities toward methylene blue. Mater Sci Semicond Process 122:105495. https://doi.org/10.1016/j.mssp.2020.105495

  46. Ge L, Han C, Liu J, Li Y (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A 409–410:215–222. https://doi.org/10.1016/j.apcata.2011.10.006

    Article  CAS  Google Scholar 

  47. Sui M, Dong Y, Wang Z, Wang F, You H (2017) A biocathode-driven photocatalytic fuel cell using an Ag-doped TiO2/Ti mesh photoanode for electricity generation and pollutant degradation. J Photochem Photobiol, A 348:238–245. https://doi.org/10.1016/j.jphotochem.2017.08.047

    Article  CAS  Google Scholar 

  48. Yang J, Liao W, Liu Y, Murugananthan M, Zhang Y (2014) Degradation of rhodamine B using a visible-light driven photocatalytic fuel cell. Electrochim Acta 144:7–15. https://doi.org/10.1016/j.electacta.2014.08.036

    Article  CAS  Google Scholar 

  49. Karimi-Nazarabad M, Goharshadi EK (2017) Highly efficient photocatalytic and photoelectrocatalytic activity of solar light driven WO3/g-C3N4 nanocomposite. Sol Energy Mater Sol Cells 160:484–493. https://doi.org/10.1016/j.solmat.2016.11.005

    Article  CAS  Google Scholar 

  50. Yan J, Wu G, Guan N, Li L (2014) Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl Catal B 152–153:280–288. https://doi.org/10.1016/j.apcatb.2014.01.049

    Article  CAS  Google Scholar 

  51. Rabé K, Liu L, Nahyoon NA, Zhang Y, Idris AM (2019) Enhanced rhodamine B and coking wastewater degradation and simultaneous electricity generation via anodic g-C3N4/Fe0(1%)/TiO2 and cathodic WO3 in photocatalytic fuel cell system under visible light irradiation. Electrochim Acta 298:430–439. https://doi.org/10.1016/j.electacta.2018.12.121

    Article  CAS  Google Scholar 

  52. Yang D, Wang W, Zhao X, Zhou Z, Ren H, Chen Y, Zhao Z, An K, Jiang Z (2020) Synthesis of high-efficient g-C3N4/polydopamine/CdS nanophotocatalyst based on bioinspired adhesion and chelation. Mater Res Bull 131:110970. https://doi.org/10.1016/j.materresbull.2020.110970

Download references

Funding

Financial support from the National Natural Science Foundation of China (Project No.51876018) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlan Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, H., Xu, Y., Zhong, D. et al. Efficient rhodamine B degradation and stable electricity generation performance of visible-light photocatalytic fuel cell with g-C3N4/WO3/TiO2/Ti photoanode. Ionics 27, 4875–4884 (2021). https://doi.org/10.1007/s11581-021-04205-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04205-8

Keywords

Navigation