Skip to main content
Log in

Enhanced proton conductivity promoted by self-assembly of aqueous 4-(1-ethyldecyl) benzenesulfonic lyotropic liquid crystal

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Acidic lyotropic liquid crystals (LLCs) have an advantage in constructing continuous proton conduction pathways owing to the well-defined structures, but the contribution of LLC to proton conductivity is hard to determine for the water-dependent nature of LLC. An aqueous 4-(1-ethyldecyl) benzenesulfonic acid solution, exhibiting a lamellar LLC phase at low hydration levels and becoming a micellar solution at high hydration levels, is employed to investigate structure-dependent proton conductivity. Electrochemical impedance spectrum (EIS) characterization reveals that the proton conductivity reaches a maximum of 173 mS cm−1 in the LLC phase. Owing to the self-assembling, the degree of dissociation of -SO3H tends to stabilize at 0.26 with increasing hydration levels. An integrated rate constant Ki is derived to evaluate the effect of self-assembly on proton conductivity, which reaches 1.90 × 107 mS cm5 mol−2 in the LLC but decreases to 1.23 × 107 mS cm5 mol−2 in the micellar solution. The single fuel cell fabricated from the LLC supported membrane exhibits a peak power density of 23.7 mW cm−2, confirming the enhanced proton conductivity under actual working conditions. The results quantitatively unveil the effect of aqueous self-assembly on proton conduction and offer a guide for achieving high conductivities in hydrated electrolytes with well-defined architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghorbani B, Vijayaraghavan K (2019) A review study on software-based modeling of hydrogen-fueled solid oxide fuel cells. Int J Hydrog Energy 44:13700–13727. https://doi.org/10.1016/j.ijhydene.2019.03.217

    Article  CAS  Google Scholar 

  2. Joghee P, Malik JN, Pylypenko S, O’Hayre R (2015) A review on direct methanol fuel cells - in the perspective of energy and sustainability. Mrs Energy Sustain 2:E3. https://doi.org/10.1557/mre.2015.4

    Article  Google Scholar 

  3. Wang Y, Chen KS, Mishler J, Cho SC, Adroher XC (2011) A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Appl Energ 88:981–1007. https://doi.org/10.1016/j.apenergy.2010.09.030

    Article  CAS  Google Scholar 

  4. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117:987–1104. https://doi.org/10.1021/acs.chemrev.6b00159

    Article  CAS  PubMed  Google Scholar 

  5. Wu X, Wang X, He G, Benziger J (2011) Differences in water sorption and proton conductivity between Nafion and SPEEK. J Polym Sci Pol Phys 49:1437–1445. https://doi.org/10.1002/polb.22326

    Article  CAS  Google Scholar 

  6. Banerjee S, Kar KK (2017) Impact of degree of sulfonation on microstructure, thermal, thermomechanical and physicochemical properties of sulfonated poly ether ether ketone. Polymer 109:176–186. https://doi.org/10.1016/j.polymer.2016.12.030

    Article  CAS  Google Scholar 

  7. Haubold HG, Vad T, Jungbluth H, Hiller P (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563. https://doi.org/10.1016/s0013-4686(00)00753-2

    Article  CAS  Google Scholar 

  8. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585. https://doi.org/10.1021/cr0207123

    Article  CAS  PubMed  Google Scholar 

  9. Narimani R, Yang ACC, Tsang EMW, Rubatat L, Holdcroft S, Frisken BJ (2013) Controlling water content and proton conductivity through copolymer morphology. Macromolecules 46:9676–9687. https://doi.org/10.1021/ma402008b

    Article  CAS  Google Scholar 

  10. van’t Hag L, Gras SL, Conn CE, Drummond CJ (2017) Lyotropic liquid crystal engineering moving beyond binary compositional space - ordered nanostructured amphiphile self-assembly materials by design. Chem Soc Rev 46:2705–31. https://doi.org/10.1039/c6cs00663a

    Article  CAS  Google Scholar 

  11. Zhai J, Fong C, Tran N, Drummond CJ (2019) Non-lamellar lyotropic liquid crystalline lipid nanoparticles for the next generation of nanomedicine. ACS Nano 13:6178–6206. https://doi.org/10.1021/acsnano.8b07961

    Article  CAS  PubMed  Google Scholar 

  12. Ueda S, Kagimoto J, Ichikawa T, Kato T, Ohno H (2011) Anisotropic proton-conductive materials formed by the self-organization of phosphonium-type zwitterions. Adv Mater 23:3071–3074. https://doi.org/10.1002/adma.201100942

    Article  CAS  PubMed  Google Scholar 

  13. Huang Y, Cong Y, Li J, Wang D, Zhang J, Xu L et al (2009) Anisotropic ionic conductivities in lyotropic supramolecular liquid crystals. Chem Commun 48:7560–7562. https://doi.org/10.1039/b912472a

    Article  CAS  Google Scholar 

  14. Lu F, Gao XP, Doug B, Sun PP, Sun N, Xie ST et al (2014) Nanostructured proton conductors formed via in situ polymerization of ionic liquid crystals. ACS Appl Mater Inter 6:21970–21977. https://doi.org/10.1021/am504504m

    Article  CAS  Google Scholar 

  15. Jackson GL, Perroni DV, Mahanthappa MK (2017) Roles of chemical functionality and pore curvature in the design of nanoporous proton conductors. J Phys Chem B 121:9429–9436. https://doi.org/10.1021/acs.jpcb.7b06366

    Article  CAS  PubMed  Google Scholar 

  16. Ichikawa T, Kato T, Ohno H (2012) 3D continuous water nanosheet as a gyroid minimal surface formed by bicontinuous cubic liquid-crystalline zwitterions. J Am Chem Soc 134:11354–11357. https://doi.org/10.1021/ja304124w

    Article  CAS  PubMed  Google Scholar 

  17. Luo J, You J, Tan S, Wang C, Wu Y (2020) Lamellar lyotropic liquid crystal superior to micellar solution for proton conduction in an aqueous solution of 1-tetradecyl-3-methylimidazolium hydrogen sulfate. ACS Appl Mater Inter 12:45611–45617. https://doi.org/10.1021/acsami.0c13349

    Article  CAS  Google Scholar 

  18. Artykulnyi OP, Shibaev AV, Avdeev MM, Ivankov OI, Bulavin LA, Petrenko VI et al (2020) Structural investigations of poly(ethylene glycol)-dodecylbenzenesulfonic acid complexes in aqueous solutions. J Mol Liq 308:113045. https://doi.org/10.1016/j.molliq.2020.113045

    Article  CAS  Google Scholar 

  19. Petrenko VI, Artykulnyi OP, Bulavin LA, Almasy L, Garamus VM, Ivankov OI et al (2018) On the impact of surfactant type on the structure of aqueous ferrofluids. Colloid Surface A 541:222–226. https://doi.org/10.1016/j.colsurfa.2017.03.054

    Article  CAS  Google Scholar 

  20. Scheu R, Chen YX, de Aguiar HB, Rankin BM, Ben-Amotz D, Roke S (2014) Specific ion effects in amphiphile hydration and interface stabilization. J Am Chem Soc 136:2040–2047. https://doi.org/10.1021/ja4120117

    Article  CAS  PubMed  Google Scholar 

  21. Ferrer-Tasies L, Moreno-Calvo E, Cano-Sarabia M, Aguilella-Arzo M, Angelova A, Lesieur S et al (2013) Quatsomes: vesicles formed by self-assembly of sterols and quaternary ammonium surfactants. Langmuir 29:6519–6528. https://doi.org/10.1021/la4003803

    Article  CAS  PubMed  Google Scholar 

  22. Shi L, Zhao M, Zheng L (2012) Lyotropic liquid crystalline phases formed in ternary mixtures of N-alkyl-N-methylpyrrolidinium bromide/1-decanol/water. RSC Adv 2:11922–11929. https://doi.org/10.1039/c2ra21467a

    Article  CAS  Google Scholar 

  23. Mishra K, Hashmi SA, Rai DK (2014) Protic ionic liquid-based gel polymer electrolyte: structural and ion transport studies and its application in proton battery. J Solid State Electr 18:2255–2266. https://doi.org/10.1007/s10008-014-2475-2

    Article  CAS  Google Scholar 

  24. Suarez SN, Jayakody JRP, Greenbaum SG, Zawodzinski T, Fontanella JJ (2010) A fundamental study of the transport properties of aqueous superacid solutions. J Phys Chem B 114:8941–8947. https://doi.org/10.1021/jp909572q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang D, Nap RJ, Lagzi I, Kowalczyk B, Han S, Grzybowski BA et al (2011) How and why nanoparticle’s curvature regulates the apparent pK(a) of the coating ligands. J Am Chem Soc 133:2192–2197. https://doi.org/10.1021/ja108154a

    Article  CAS  PubMed  Google Scholar 

  26. Bouchet R, Siebert E (1999) Proton conduction in acid doped polybenzimidazole. Solid State Ionics 118:287–299. https://doi.org/10.1016/s0167-2738(98)00466-4

    Article  CAS  Google Scholar 

  27. Dippel T, Kreuer KD (1991) Proton transport mechanism in concentrated aqueous-solutions and solid hydrates of acids. Solid State Ionics 46:3–9. https://doi.org/10.1016/0167-2738(91)90122-r

    Article  CAS  Google Scholar 

  28. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mat 8:610–641. https://doi.org/10.1021/cm950192a

    Article  CAS  Google Scholar 

  29. Marx D (2006) Proton Transfer 200 Years after Von Grotthuss: insights from ab initio simulations. ChemPhysChem 7:1848–1870. https://doi.org/10.1002/cphc.200600128

    Article  PubMed  Google Scholar 

  30. Siu A, Schmeisser J, Holdcroft S (2006) Effect of water on the low temperature conductivity of polymer electrolytes. J Phys Chem B 110:6072–6080. https://doi.org/10.1021/jp0531208

    Article  CAS  PubMed  Google Scholar 

  31. Bibent N, Mehdi A, Silly G, Henn F, Devautour-Vinot S (2011) Proton conductivity versus acidic strength of one-pot synthesized acid-functionalized SBA-15 Mesoporous silica. Eur J Inorg Chem 21:3214–3225. https://doi.org/10.1002/ejic.201100186

    Article  CAS  Google Scholar 

  32. Abe Y, Takahashi M (2005) Protonic conduction model in glasses - a quadratic relation between conductivity and proton concentration. Chem Phys Lett 411:302–305. https://doi.org/10.1016/j.cplett.2005.06.043

    Article  CAS  Google Scholar 

  33. Sampoli M, Marziano NC, Tortato C (1989) Dissociation of trifluoromethanesulfonic acid in aqueous-solutions by Raman-spectroscopy. J Chem Phys 93:7252–7257. https://doi.org/10.1021/j100357a043

    Article  CAS  Google Scholar 

  34. Edwards HGM (1989) The vibrational-spectrum of trifluoromethanesulphonic acid, CF3SO3H, and the determination of its degrees of dissociation in aqueous-solution by Raman-spectroscopy. Spectrochim Acta A 45:715–719. https://doi.org/10.1016/0584-8539(89)80257-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, J., Luo, J., Tan, S. et al. Enhanced proton conductivity promoted by self-assembly of aqueous 4-(1-ethyldecyl) benzenesulfonic lyotropic liquid crystal. Ionics 27, 4307–4314 (2021). https://doi.org/10.1007/s11581-021-04197-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04197-5

Keywords

Navigation