Skip to main content

Advertisement

Log in

Preparation of CeO2/Cu-MOF/GO composite for efficient electrocatalytic oxygen evolution reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Clean hydrogen energy is urgently needed in the world, so it is necessary to develop a high-efficiency electrocatalyst (OER) for oxygen evolution reaction. Metal–organic frameworks (MOFs) are a class of promising materials for diverse heterogeneous catalysis, but they are usually not directly employed for oxygen evolution electrocatalysis. In this paper, it is reported that a series of CeO2/MOF/GO composites prepared by the hydrothermal method can be directly used as high-efficiency electrocatalysts. The new materials have excellent properties, including high catalytic activity, high specific surface area, and abundant oxygen vacancies. The factors increase the electrochemical surface area (ECSA) and improve the OER performance of the catalyst. The optimized CeO2/MOF/GO catalyst has a low overpotential of 386 mV at 10 mA·cm−2 and a Tafel slope of 98.1 mV·dec−1, and has good stability under alkaline conditions. Therefore, the newly synthesized lanthanide-doped layered materials are expected to be a promising and efficient electrocatalyst for water decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Li W, Fang W, Wu C, Dinh KN, Ren H, Zhao L, Liu C, Yan Q (2020) Bimetal–MOF nanosheets as efficient bifunctional electrocatalysts for oxygen evolution and nitrogen reduction reaction. J Mater Chem A 8:3658–3666

    Article  CAS  Google Scholar 

  2. Qian Z, Wang K, Shi K, Fu Z, Mai Z, Wang X, Tang Z, Tian Y (2020) Interfacial electron transfer of heterostructured mil-88a/Ni(Oh)2 enhances the oxygen evolution reaction in alkaline solutions. J Mater Chem A 8:3311–3321

    Article  CAS  Google Scholar 

  3. Lyons ME, Floquet S (2011) Mechanism of oxygen reactions at porous oxide electrodes. Part 2–oxygen evolution at ruo2, iro2 and ir(x)ru(1–x)o2 electrodes in aqueous acid and alkaline solution. Phys Chem Chem Phys 13:5314–5335

    Article  CAS  PubMed  Google Scholar 

  4. Trotochaud L, Ranney JK, Williams KN, Boettcher SW (2012) Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J Am Chem Soc 134:17253–17261

    Article  CAS  PubMed  Google Scholar 

  5. Cheng Y, Liu C, Cheng HM, Jiang SP (2014) One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. ACS Appl Mater Interfaces 6:10089–10098

    Article  CAS  PubMed  Google Scholar 

  6. Cibrev D, Jankulovska M, Lana-Villarreal T, Gómez R (2013) Oxygen evolution at ultrathin nanostructured Ni(Oh)2 layers deposited on conducting glass. Int J Hydrog Energy 38:2746–2753

    Article  CAS  Google Scholar 

  7. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013) An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135:8452–8455

    Article  CAS  PubMed  Google Scholar 

  8. Lyons ME, Brandon MP (2009) Redox switching and oxygen evolution electrocatalysis in polymeric iron oxyhydroxide films. Phys Chem Chem Phys 11:2203–2217

    Article  CAS  PubMed  Google Scholar 

  9. Zhou W, Sunarso J (2013) Enhancing bi-functional electrocatalytic activity of perovskite by temperature shock: a case study of lanio3−δ. J Phys Chem Lett 4:2982–2988

    Article  CAS  Google Scholar 

  10. Zhao Y, Mavrokefalos CK, Zhang P, Erni R, Li J, Triana CA, Patzke GR (2020) Self-templating strategies for transition metal sulfide nanoboxes as robust bifunctional electrocatalysts. Chem Mater 32:1371–1383

    Article  CAS  Google Scholar 

  11. Singh B, Prakash O, Maiti P, Indra A (2020) Electrochemical transformation of metal organic framework into ultrathin metal hydroxide-(oxy)hydroxide nanosheets for alkaline water oxidation. ACS Appl Nano Mater 3:6693–6701

    Article  CAS  Google Scholar 

  12. Septiani NLW, Kaneti YV, Fathoni KB, Kani K, Allah AE, Yuliarto B, Nugraha HK, Dipojono ZA, Alothman DG, Yamauchi Y (2020) Self-assembly of two-dimensional bimetallic nickel–cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem Mater 32:7005–7018

    Article  CAS  Google Scholar 

  13. Septiani NLW, Kaneti YV, Fathoni KB, Guo Y, Ide Y, Yuliarto B, Jiang X, Nugraha HK, Dipojono DG, Yamauchi Y (2020) Tailorable nanoarchitecturing of bimetallic nickel–cobalt hydrogen phosphate via the self-weaving of nanotubes for efficient oxygen evolution. J Mater Chem A 8:3035–3047

    Article  CAS  Google Scholar 

  14. S. H. Ruland H , Laudenschleger D, (2020) Cover feature: Co2 hydrogenation with cu/zno/al2o3: A benchmark study (chemcatchem. Publisher ChemCatChem 2091–2096

  15. Y. V. Kaneti, Y. Guo, N. L. W. Septiani, M. Iqbal, X. Jiang, T. Takei, B. Yuliarto, Z. A. Alothman, D. Golberg and Y. Yamauchi, (2021) Self-templated fabrication of hierarchical hollow manganese-cobalt phosphide yolk-shell spheres for enhanced oxygen evolution reaction. Publisher Chemical Engineering Journal 405

  16. Chen X, Wang H, Meng R, Xia B, Ma Z (2020) Cadmium hydroxide: a missing non-noble metal hydroxide electrocatalyst for the oxygen evolution reaction. ACS Appl Energy Mater 3:1305–1310

    Article  CAS  Google Scholar 

  17. Danilovic N, Subbaraman R, Chang KC, Chang SH, Kang Y, Snyder J, Paulikas AP, Strmcnik D, Kim YT, Myers D, Stamenkovic VR, Markovic NM (2014) Using surface segregation to design stable ru-ir oxides for the oxygen evolution reaction in acidic environments. Angew Chem Int Ed Engl 53:14016–14021

    Article  CAS  PubMed  Google Scholar 

  18. Hikita SCLDFCKNY, Montoya J, Doyle A (2016) A highly active and stable irox/sriro3 catalyst for the oxygen evolution reaction. Science 353:1011–1014

    Article  PubMed  CAS  Google Scholar 

  19. Hou J, Shao Y, Ellis MW, Moore RB, Yi B (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  CAS  PubMed  Google Scholar 

  20. Pumera M (2010) Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 39:4146–4157

    Article  CAS  PubMed  Google Scholar 

  21. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796

    Article  CAS  PubMed  Google Scholar 

  22. Allendorf MD, Schwartzberg A, Stavila V, Talin AA (2011) A roadmap to implementing metal-organic frameworks in electronic devices: challenges and critical directions. Chemistry 17:11372–11388

    Article  CAS  PubMed  Google Scholar 

  23. Jahan M, Bao Q, Loh KP (2012) Electrocatalytically active graphene-porphyrin mof composite for oxygen reduction reaction. J Am Chem Soc 134:6707–6713

    Article  CAS  PubMed  Google Scholar 

  24. Petit C, Bandosz TJ (2009) Mof-graphite oxide composites: combining the uniqueness of graphene layers and metal-organic frameworks. Adv Mater 21:4753–4757

    Article  CAS  Google Scholar 

  25. Jahan M, Liu Z, Loh KP (2013) A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for her, oer, and orr. Adv Funct Mater 23:5363–5372

    Article  CAS  Google Scholar 

  26. Wu Z, Li M, Howe J, Meyer HM 3rd, Overbury SH (2010) Probing defect sites on ceo2 nanocrystals with well-defined surface planes by Raman spectroscopy and o2 adsorption. Langmuir 26:16595–16606

    Article  CAS  PubMed  Google Scholar 

  27. Campos CL, Roldán C, Aponte M, Ishikawa Y, Cabrera CR (2005) Preparation and methanol oxidation catalysis of pt-ceo2 electrode. J Electroanal Chem 581:206–215

    Article  CAS  Google Scholar 

  28. Ivanova AS (2009) Physicochemical and catalytic properties of systems based on ceo2. Kinet Catal 50:797–815

    Article  CAS  Google Scholar 

  29. Lawrence NJ, Brewer JR, Wang L, Wu TS, Wells-Kingsbury J, Ihrig MM, Wang G, Soo YL, Mei WN, Cheung CL (2011) Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano Lett 11:2666–2671

    Article  CAS  PubMed  Google Scholar 

  30. Ramaswamy BMA (2007) Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene. J Am Chem Soc 11:3062–3063

    Google Scholar 

  31. Yoshimura TTTWNSASM (2009) Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J Phys Chem C 113:19789–19793

    Article  CAS  Google Scholar 

  32. Agarwal S, Zhu X, Hensen EJM, Lefferts L, Mojet BL (2014) Defect chemistry of ceria nanorods. J Phys Chem C 118:4131–4142

    Article  CAS  Google Scholar 

  33. Yu Y, Peng X, Ali U, Liu X, Xing Y, Xing S (2019) Facile route to achieve bifunctional electrocatalysts for oxygen reduction and evolution reactions derived from ceo2 encapsulated by the zeolitic imidazolate framework-67. Inorg Chem Front 6:3255–3263

    Article  CAS  Google Scholar 

  34. Gao X, Zhu G, Zhang X, Hu T (2019) Porous carbon materials derived from in situ construction of metal-organic frameworks for high-performance sodium ions batteries. Microporous Mesoporous Mater 273:156–162

    Article  CAS  Google Scholar 

  35. Chen Y, Li J, Zhai B, Liang Y (2019) Enhanced photocatalytic degradation of rhb by two-dimensional composite photocatalyst. Colloids Surf A Physicochem Eng Asp 568:429–435

    Article  CAS  Google Scholar 

  36. Y. Chen, B. Zhai, Y. Liang and Y. Li, (2020) Hybrid photocatalysts using semiconductor/mof/graphene oxide for superior photodegradation of organic pollutants under visible light. Publisher Materials Science in Semiconductor Processing 107

  37. M. Li, X. Pan, M. Jiang, Y. Zhang, Y. Tang and G. Fu, (2020) Interface engineering of oxygen-vacancy-rich cop/ceo2 heterostructure boosts oxygen evolution reaction. Publisher Chemical Engineering Journal 395

  38. Hu Q, Huang X, Wang Z, Li G, Han Z, Yang H, Ren X, Zhang Q, Liu J, He C (2020) Unconventionally fabricating defect-rich nio nanoparticles within ultrathin metal–organic framework nanosheets to enable high-output oxygen evolution. J Mater Chem A 8:2140–2146

    Article  CAS  Google Scholar 

  39. Li FL, Shao Q, Huang X, Lang JP (2018) Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew Chem Int Ed Engl 57:1888–1892

    Article  CAS  PubMed  Google Scholar 

  40. Liang F, Yu Y, Zhou W, Xu X, Zhu Z (2015) Highly defective ceo2 as a promoter for efficient and stable water oxidation. J Mater Chem A 3:634–640

    Article  CAS  Google Scholar 

  41. Xu S, Lv C, He T, Huang Z, Zhang C (2019) Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. J Mater Chem A 7:7526–7532

    Article  CAS  Google Scholar 

  42. Yao Y, Cai Y, Wu G, Wei F, Li X, Chen H, Wang S (2015) Sulfate radicals induced from peroxymonosulfate by cobalt manganese oxides (co(x)mn(3–x)o4) for fenton-like reaction in water. J Hazard Mater 296:128–137

    Article  CAS  PubMed  Google Scholar 

  43. Hu L, Huang Y, Zhang F, Chen Q (2013) Cuo/cu2o composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5:4186–4190

    Article  CAS  PubMed  Google Scholar 

  44. L. Li, X. L. Liu, H. Y. Geng, B. Hu, G. W. Song and Z. S. Xu, (2013) A mof/graphite oxide hybrid (mof: Hkust-1) material for the adsorption of methylene blue from aqueous solution. Publisher Journal of Materials Chemistry A 1

  45. Li L, Liu XL, Gao M, Hong W, Liu GZ, Fan L, Hu B, Xia QH, Liu L, Song GW, Xu ZS (2014) The adsorption on magnetic hybrid fe3o4/hkust-1/go of methylene blue from water solution. J Mater Chem A 2:1795–1801

    Article  CAS  Google Scholar 

  46. Zhang T, Zhang X, Yan X, Kong L, Zhang G, Liu H, Qiu J, Yeung KL (2013) Synthesis of fe3o4@zif-8 magnetic core–shell microspheres and their potential application in a capillary microreactor. Chemi Eng J 228:398–404

    Article  CAS  Google Scholar 

  47. Zhang S, Li X-S, Chen B, Zhu X, Shi C, Zhu A-M (2014) Co oxidation activity at room temperature over au/ceo2 catalysts: disclosure of induction period and humidity effect. ACS Catalysis 4:3481–3489

    Article  CAS  Google Scholar 

  48. X. Zhang, G. Li, R. Tian, W. Feng and L. Wen, (2020) Monolithic porous cuo/ceo2 nanorod composites prepared by dealloying for co catalytic oxidation. Publisher Journal of Alloys and Compounds 826

  49. Haddad M, Belhadi A, Boudjellal L, Trari M (2020) Photocatalytic hydrogen production on the hetero-junction cuo/zno. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2020.11.053

    Article  Google Scholar 

  50. Chen W, Zhang H, Ma Z, Yang B, Li Z (2015) High electrochemical performance and lithiation–delithiation phase evolution in cuo thin films for li-ion storage. J Mater Chem A 3:14202–14209

    Article  CAS  Google Scholar 

  51. Cao K, Liu H, Li W, Han Q, Zhang Z, Huang K, Jing Q, Jiao L (2019) Cuo nanoplates for high-performance potassium-ion batteries. Small 15:e1901775

    Article  PubMed  CAS  Google Scholar 

  52. Chen Y, Liaw B, Chen H (2006) Selective oxidation of co in excess hydrogen over cuo/cexzr1-xo2cuo/cexzr1-xo2 catalysts. Int J Hydrog Energy 31:427–435

    Article  CAS  Google Scholar 

  53. Dutta SPP, Seehra MS (2006) Concentration of ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chem Mater. https://doi.org/10.1021/cm061580n:5144-5146

    Article  Google Scholar 

  54. Chen Y, Liaw B, Chang W, Huang C (2007) Selective oxidation of co in excess hydrogen over cuo/ cexzr1-xo2–al2o3cuo/ cexzr1-xo2–al2o3 catalysts. Int J Hydrog Energy 32:4550–4558

    Article  CAS  Google Scholar 

  55. Wang Z, Huang J, Mao J, Guo Q, Chen Z, Lai Y (2020) Metal–organic frameworks and their derivatives with graphene composites: preparation and applications in electrocatalysis and photocatalysis. J Mater Chem A 8:2934–2961

    Article  CAS  Google Scholar 

  56. Xing J, Guo K, Zou Z, Cai M, Du J, Xu C (2018) In situ growth of well-ordered nife-mof-74 on ni foam by fe(2+) induction as an efficient and stable electrocatalyst for water oxidation. Chem Commun (Camb) 54:7046–7049

    Article  CAS  Google Scholar 

  57. Xu H, Wang B, Shan C, Xi P, Liu W, Tang Y (2018) Ce-doped nife-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst. ACS Appl Mater Interfaces 10:6336–6345

    Article  CAS  PubMed  Google Scholar 

  58. S. Zhao, Y. Wang, J. Dong, C.-T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao and Z. Tang, (2016) Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Publisher Nature Energy 1

  59. Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, Hu X, Wang H, Pan B, Xie Y (2015) Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 54:7399–7404

    Article  CAS  PubMed  Google Scholar 

  60. Y. Wang, T. Zhou, K. Jiang, P. Da, Z. Peng, J. Tang, B. Kong, W.-B. Cai, Z. Yang and G. Zheng, (2014) Reduced mesoporous co3o4nanowires as efficient water oxidation electrocatalysts and supercapacitor electrodes. Publisher Advanced Energy Materials 4

  61. Y. Takagi, B.-K. Lai, K. Kerman and S. Ramanathan, (2011) Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Publisher Energy & Environmental Science 4

  62. Meng J, Zhou Y, Chi H, Li K, Wan J, Hu Z (2019) Bimetallic porphyrin mof anchored onto rgo nanosheets as a highly efficient 2d electrocatalyst for oxygen evolution reaction in alkaline conditions. ChemistrySelect 4:8661–8670

    Article  CAS  Google Scholar 

  63. Bikkarolla SK, Papakonstantinou P (2015) Cuco2o4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 281:243–251

    Article  CAS  Google Scholar 

  64. Y. Yang, L. Dang, M. J. Shearer, H. Sheng, W. Li, J. Chen, P. Xiao, Y. Zhang, R. J. Hamers and S. Jin, (2018) Highly active trimetallic nifecr layered double hydroxide electrocatalysts for oxygen evolution reaction. Publisher Advanced Energy Materials 8

  65. Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Lang JP (2019) Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew Chem Int Ed Engl 58:7051–7056

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Huang, N. & Liang, Y. Preparation of CeO2/Cu-MOF/GO composite for efficient electrocatalytic oxygen evolution reaction. Ionics 27, 4347–4360 (2021). https://doi.org/10.1007/s11581-021-04173-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04173-z

Keywords

Navigation