Skip to main content

Advertisement

Log in

Porous polypropylene membrane for CO2 electro-reduction in organic medium

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A low-cost porous polypropylene membrane has been employed as the diaphragm for CO2 electro-reduction in H-type electrolysis cell in organic electrolyte. Compared with the commonly used Nafion membrane, porous polypropylene exhibits many advantages, such as low cost, low ionic transport resistance, high Faradaic efficiency, low cell voltage, and high energy efficiency. The ionic transport mechanism in polypropylene membrane has been investigated: owing to the presence of interconnected sponge-like in the membrane, and due to the hydrophobic nature of polypropylene, only organic solution can enter into the pore of the polypropylene membrane. As a consequence, an organic/aqueous liquid–liquid interface is formed on the anode side. During the electrolysis process, H2O is oxidized at the anode. The generated protons transfer through the liquid–liquid interface and diffuse to the cathode to take part in CO2 electro-reduction reaction. Because the cost of polypropylene membrane is cheap, it has a promising perspective in practical utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wu M, Liao J, Yu L, Lv R, Li P, Sun W et al (2020) 2020 Roadmap on carbon materials for energy storage and conversion. Chem Asian J 15:995–1013

    Article  CAS  PubMed  Google Scholar 

  2. Su DS (2012) Editorial: chemistry of energy conversion and storage. ChemSusChem 5:443–445

    Article  CAS  PubMed  Google Scholar 

  3. Islam MR, Guo Y, Zhu J (2014) A review of offshore wind turbine nacelle: technical challenges, and research and developmental trends. Renew Sustain Energy Rev 33:161–176

    Article  Google Scholar 

  4. Rourke FO, Boyle F, Reynolds A (2010) Tidal energy update 2009. Appl Energy 87:398–409

    Article  Google Scholar 

  5. Singh GK (2013) Solar power generation by PV (photovoltaic) technology: a review. Energy 53:1–13

    Article  Google Scholar 

  6. Albo J, Alvarez-Guerra M, Castaño P, Irabien A (2015) Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem 17:2304–2324

    Article  CAS  Google Scholar 

  7. Merino-Garcia I, Albo J, Irabien A (2018) Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles. Nanotechnology 29:014001

    Article  CAS  PubMed  Google Scholar 

  8. Kibria MG, Edwards JP, Gabardo CM, Dinh CT, Seifitokaldani A, Sinton D et al (2019) Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design. Adv Mater 31:e1807166

    Article  PubMed  CAS  Google Scholar 

  9. Han L, Song S, Liu M, Yao S, Liang Z, Cheng H et al (2020) Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J Am Chem Soc 142:12563–12567

    Article  CAS  PubMed  Google Scholar 

  10. Albo J, Beobide G, Castaño P, Irabien A (2017) Methanol electrosynthesis from CO2 at Cu2O/ZnO prompted by pyridine-based aqueous solutions. J CO2 Util 18:164–172

    Article  CAS  Google Scholar 

  11. Albo J, Irabien A (2016) Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal 343:232–239

    Article  CAS  Google Scholar 

  12. Merino-Garcia Ivan, Albo Jonathan, Irabien Angel (2017) Productivity and selectivity of gas-phase CO2 electroreduction to methane at copper nanoparticle-based electrodes. Energy Technol 5:922–8

    Article  CAS  Google Scholar 

  13. Centi G, Perathoner S (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal Today 148:191–205

    Article  CAS  Google Scholar 

  14. Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6:1711

    Article  CAS  Google Scholar 

  15. Hori Y (2008) Electrochemical CO2 reduction on metal electrodes. Springer, New York, 42:89-189

  16. Dubois MR, Dubois DL (2009) Development of molecular electrocatalysts for CO2 reduction and H2 production/oxidation. Acc Chem Res 42:1974–1982

    Article  PubMed  CAS  Google Scholar 

  17. Kong Z, Li L, Wang T, Rong C, Xue Y, Zhang T et al (2020) New insights into the cultivation of N,N-dimethylformamide-degrading methanogenic consortium: a long-term investigation on the variation of prokaryotic community inoculated with activated sludge. Environ Res 182:109060

    Article  CAS  PubMed  Google Scholar 

  18. Lozinsky VI, Leonova IM, Ivanov RV, Bakeeva IV (2017) A study of cryostructuring of polymer systems. 46. Physicochemical properties and microstructure of poly(vinyl alcohol) cryogels formed from polymer solutions in mixtures of dimethyl sulfoxide with low-molecular-mass alcohols. Colloid J 79:788–96

    Article  CAS  Google Scholar 

  19. Izutsu K, Kolthoff IM, Fujinaga T, Hattori M, Chantooni MK (1977) Base equilibria of some acids in propylene carbonate. Anal Chem 49:503–8

    Article  CAS  Google Scholar 

  20. Eneau-Innocent B, Pasquier D, Ropital F, Léger JM, Kokoh KB (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B 98:65–71

    Article  CAS  Google Scholar 

  21. Murrieta-Guevara F, Rodriguez AT (1984) Solubility of carbon dioxide, hydrogen sulfide, and methane in pure and mixed solvents. J Chem Eng 29:456–60

    CAS  Google Scholar 

  22. Alvarez-Guerra M, Albo J, Alvarez-Guerra E, Irabien A (2015) Ionic liquids in the electrochemical valorisation of CO2. Energy Environ Sci 8:2574–2599

    Article  CAS  Google Scholar 

  23. Rosen BA, Zhu W, Kaul G, Salehi-Khojin A, Masel RI (2012) Water enhancement of CO2 conversion on silver in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Electrochem Soc 160:H138–H141

    Article  CAS  Google Scholar 

  24. Rosen BA, Salehi-Khojin A, Thorson MR, Zhu W, Whipple DT, Kenis PJA, Masel RI (2011) Ionic liquid-mediated selective conversion of CO2 to CO at low overpotentials. Science 334:643–4

    Article  CAS  PubMed  Google Scholar 

  25. Oh Y, Hu X (2013) Organic molecules as mediators and catalysts for photocatalytic and electrocatalytic CO2 reduction. Chem Soc Rev 42:2253–2261

    Article  CAS  PubMed  Google Scholar 

  26. House HO, Feng E, Peet NP (1971) A comparison of various tetraalkylammonium salts as supporting electrolytes in organic electrochemical reactions. J Organic Chem 36:2371–5

    Article  CAS  Google Scholar 

  27. Shi J, Li Q-Y, Shi F, Song N, Jia Y-J, Hu Y-Q et al (2016) Design of a two-compartment electrolysis cell for the reduction of CO2 to CO in tetrabutylammonium perchlorate/propylene carbonate for renewable electrical energy storage. J Electrochem Soc 163:G82–G87

    Article  CAS  Google Scholar 

  28. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Article  CAS  Google Scholar 

  29. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–97

    Article  CAS  Google Scholar 

  30. Lee H, Yanilmaz M, Toprakci O, Fu K, Zhang X (2014) A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy Environ Sci 7:3857–3886

    Article  CAS  Google Scholar 

  31. Huang X (2010) Separator technologies for lithium-ion batteries. J Solid State Electrochem 15:649–662

    Article  CAS  Google Scholar 

  32. Xia Z, Qiu W, Bao H, Yang B, Lei L, Zhikang X, Li Z (2016) Electrochemical reduction of gaseous CO2 with a catechol and polyethyleneimine co-deposited polypropylene membrane. Electrochem Commun 71:1–4. https://doi.org/10.1016/j.elecom.2016.07.009

    Article  CAS  Google Scholar 

  33. Yang D-R, Liu L, Zhang Q, Shi Y, Zhou Y, Liu C et al (2020) Importance of Au nanostructures in CO2 electrochemical reduction reaction. Sci Bull 65:796–802

    Article  CAS  Google Scholar 

  34. Andrews E, Katla S, Kumar C, Patterson M, Sprunger P, Flake J (2015) Electrocatalytic reduction of CO2 at Au nanoparticle electrodes: effects of interfacial chemistry on reduction behavior. J Electrochem Soc 162:F1373–F1378

    Article  CAS  Google Scholar 

  35. Arora P, Zhang ZJ (2004) Battery separators. Chem Rev 104(10):4419–4462. https://doi.org/10.1021/cr020738u

    Article  CAS  PubMed  Google Scholar 

  36. Lee H, Alcoutlabi M, Toprakci O, Xu G, Watson JV, Zhang X (2014) Preparation and characterization of electrospun nanofiber-coated membrane separators for lithium-ion batteries. J Solid State Electrochem 18:2451–2458

    Article  CAS  Google Scholar 

  37. Cho T-H, Tanaka M, Ohnishi H, Kondo Y, Yoshikazu M, Nakamura T et al (2010) Composite nonwoven separator for lithium-ion battery: development and characterization. J Power Sources 195:4272–4277

    Article  CAS  Google Scholar 

  38. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–86

    Article  CAS  PubMed  Google Scholar 

  39. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104:4637–78

    Article  CAS  PubMed  Google Scholar 

  40. Shi J, Chen T-Y, Shi F, Shen F-X, Dai Y-N, Yang B et al (2018) Non-membrane electrolysis cell for CO2 reduction to CO in propylene carbonate/tetrabutylammonium perchlorate. J Electrochem Soc 165:G51–G55

    Article  CAS  Google Scholar 

  41. Gregory SB, Torsten R, Raguse B (2002) Energy storage by the electrochemical reduction of CO2 a porous Au film. J Electroanal Chem 526:125–33

    Article  Google Scholar 

  42. Salvatore DA, Weekes DM, He J, Dettelbach KE, Li YC, Mallouk TE et al (2017) Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett 3:149–154

    Article  CAS  Google Scholar 

  43. Endrődi B, Bencsik G, Darvas F, Jones R, Rajeshwar K, Janáky C (2017) Continuous-flow electroreduction of carbon dioxide. Prog Energy Combust Sci 62:133–154

    Article  Google Scholar 

  44. Hu S, Zhang L, Liu H, Cao Z, Yu W, Zhu X et al (2019) Alkaline-earth elements (Ca, Sr and Ba) doped LaFeO3-δ cathodes for CO2 electroreduction. J Power Sources 443:227268

    Article  CAS  Google Scholar 

  45. Song Y, Zhang X, Zhou Y, Lv H, Liu Q, Feng W et al (2019) Improving the performance of solid oxide electrolysis cell with gold nanoparticles-modified LSM-YSZ anode. J Energy Chem 35:181–187

    Article  Google Scholar 

  46. Tan X, Yu C, Ren Y, Cui S, Li W, Qiu J (2021) Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ Sci 14:765–780

    Article  CAS  Google Scholar 

  47. Tufa RA, Chanda D, Ma M, Aili D, Demissie TB, Vaes J et al (2020) Towards highly efficient electrochemical CO2 reduction: cell designs, membranes and electrocatalysts. Appl Energy 277:115557

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (NSFC 52067012, U1802256) and the Analysis and Testing Foundation of Kunming University of Science and Technology (2020P20191130003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Hu or Jin Shi.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 341 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Ty., Hu, J., Wang, Kz. et al. Porous polypropylene membrane for CO2 electro-reduction in organic medium. Ionics 27, 3639–3645 (2021). https://doi.org/10.1007/s11581-021-04134-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04134-6

Keywords

Navigation