Skip to main content
Log in

Ionic liquid-assisted hydrothermal synthesis of ZnWO4 nanoparticles used for photocatalytic applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Here, we have successfully synthesized single-phase ZnWO4 nanoparticles using a highly effective low-temperature ionic liquid-assisted hydrothermal method at 180 °C for 24 h. TEM images show that agglomerated, irregular-shaped nanoparticles and XRD confirm the monoclinic wolframite phase of ZnWO4 with P2/c space group. The main vibrational modes for ZnWO4 are observed in the IR region from 468 to 880 cm−1 and the optical absorption peaks at 280 nm. Also, photocatalytic degradation was carried out over suspensions of ZnWO4 against Indigo Carmine (IC) dye under UV light irradiation. The effects of various operational parameters were examined and we observed that the degradation efficiency was reached up to 90% within 120 min. Hence, ZnWO4 nanoparticles are proven to be good materials for photocatalytic dye degradation application and the future of the technology.

Graphical abstract

We have successfully synthesized ZnWO4 nanoparticles via ionic liquid-assisted hydrothermal method. The obtained product shows excellent photocatalytic activity against Indigo Carmine (IC) dye solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Q, Shi Y, Niu T, He J, She H, Su B (2017) Preparing ZnWO4-CdS composite with excellent visible light photocatalytic activity under mild conditions. J Sol-Gel Sci Technol 83(3):555–566

    Article  CAS  Google Scholar 

  2. Gümüş D, Akbal F (2011) Photocatalytic degradation of textile dye and wastewater. Water Air Soil Pollut 216(1–4):117–124

    Article  CAS  Google Scholar 

  3. Pavithra N, Patil SB, Kumar SK, Alharthi FA, Nagaraju G (2019) Facile synthesis of nanocrystalline β-SnWO4: as a photocatalyst, biosensor and anode for Li-ion battery. SN Appl Sci 1(9):1123

    Article  CAS  Google Scholar 

  4. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  CAS  PubMed  Google Scholar 

  5. Pavithra N, Lingaraju K, Raghu G, Nagaraju G (2017) Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: applications to photocatalytic, electrochemical sensor and antibacterial activities. Spectrochim Acta Part A Mol Biomol Spectrosc 185:11–19

    Article  CAS  Google Scholar 

  6. Ahmed J, Ahamad T, Ubaidullah M, Al-Enizi AM, Alhabarah AN, Alhokbany N, Alshehri SM (2019) rGO supported NiWO4 nanocomposites for hydrogen evolution reactions. Mater Lett 240:51–54

    Article  CAS  Google Scholar 

  7. Ahmed J, Ahamad T, Alhokbany N, Almaswari BM, Ahmad T, Hussain A, Al-Farraj ESS, Alshehri SM (2018) Molten salts derived copper tungstate nanoparticles as bifunctional electro-catalysts for electrolysis of water and supercapacitor applications. ChemElectroChem 5(24):3938–3945

    Article  CAS  Google Scholar 

  8. Alshehri SM, Ahmed J, Alzahrani AM, Ahamad T (2017) Synthesis, characterization, and enhanced photocatalytic properties of NiWO4 nanobricks. New J Chem 41(16):8178–8186

    Article  CAS  Google Scholar 

  9. AlShehri SM, Ahmed J, Ahamad T, Arunachalam P, Ahmad T, Khan A (2017) Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR). RSC Adv 7(72):45615–45623

    Article  CAS  Google Scholar 

  10. Alshehri SM, Ahmed J, Ahamad T, Alhokbany N, Arunachalam P, Al-Mayouf AM, Ahmad T (2018) Synthesis, characterization, multifunctional electrochemical (OGR/ORR/SCs) and photodegradable activities of ZnWO4 nanobricks. J Sol-Gel Sci Technol 87(1):137–146

    Article  CAS  Google Scholar 

  11. Garadkar K, Ghule L, Sapnar K, Dhole S (2013) A facile synthesis of ZnWO4 nanoparticles by microwave assisted technique and its application in photocatalysis. Mater Res Bull 48(3):1105–1109

    Article  CAS  Google Scholar 

  12. Santos CJ, Ferreira Soares DC, Ferreira CdA, de Barros ALB, Silva Cunha Junior Ad, Filho FM (2018) Antiangiogenic evaluation of ZnWO4 nanoparticles synthesised through microwave-assisted hydrothermal method. J Drug Target 26(9):806–817

    Article  CAS  PubMed  Google Scholar 

  13. Geetha G, Sivakumar R, Ganesh V, Sanjeeviraja C (2019) Properties of polymeric surfactant mediated ZnWO4 nanoparticles for photocatalytic application. AIP Conference Proceedings, AIP Publishing LLC, p. 020112

  14. Zhang L, Wang W, Chen Z, Zhou L, Xu H, Zhu W (2007) Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J Mater Chem 17(24):2526–2532

    Article  CAS  Google Scholar 

  15. Pereira PFdS, Gouveia A, Assis M, De Oliveira RC, Pinatti I, Penha M, Gonçalves R, Gracia L, Andrés J, Longo E (2018) ZnWO4 nanocrystals: synthesis, morphology, photoluminescence and photocatalytic properties. Phys Chem Chem Phys 20(3):1923–1937

    Article  CAS  PubMed  Google Scholar 

  16. Validžić IL, Savić TD, Krsmanović RM, Jovanović DJ, Novaković MM, Popović MČ, Čomor MI (2012) Synthesis, strong room-temperature PL and photocatalytic activity of ZnO/ ZnWO4 rod-like nanoparticles. Mater Sci Eng, B 177(9):645–651

    Article  CAS  Google Scholar 

  17. Lu J, Liu M, Zhou S, Zhou X, Yang Y (2017) Electrospinning fabrication of ZnWO4 nanofibers and photocatalytic performance for organic dyes. Dyes Pigm 136:1–7

    Article  CAS  Google Scholar 

  18. Sethi YA, Praveen C, Panmand RP, Ambalkar A, Kulkarni AK, Gosavi SW, Kulkarni MV, Kale BB (2018) Perforated N-doped monoclinic ZnWO4 nanorods for efficient photocatalytic hydrogen generation and RhB degradation under natural sunlight. Catal Sci Technol 8(11):2909–2919

    Article  CAS  Google Scholar 

  19. Hojamberdiev M, Zhu G, Xu Y (2010) Template-free synthesis of ZnWO4 powders via hydrothermal process in a wide pH range. Mater Res Bull 45(12):1934–1940

    Article  CAS  Google Scholar 

  20. Eranjaneya H, Chandrappa G (2016) Solution combustion synthesis of nano ZnWO4 photocatalyst. Trans Indian Ceram Soc 75(2):133–137

    Article  CAS  Google Scholar 

  21. Bi J, Wu L, Li Z, Ding Z, Wang X, Fu X (2009) A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. J Alloy Compd 480(2):684–688

    Article  CAS  Google Scholar 

  22. Lou Z, Hao J, Cocivera M (2002) Luminescence of ZnWO4and CdWO4 thin films prepared by spray pyrolysis. J Lumin 99(4):349–354

    Article  CAS  Google Scholar 

  23. Kalinko A, Kuzmin A (2011) Static and dynamic structure of ZnWO4 nanoparticles. J Non-Cryst Solids 357(14):2595–2599

    Article  CAS  Google Scholar 

  24. Phani A, Passacantando M, Lozzi L, Santucci S (2000) Structural characterization of bulk ZnWO4 prepared by solid state method. J Mater Sci 35(19):4879–4883

    Article  CAS  Google Scholar 

  25. Zhao X, Yao W, Wu Y, Zhang S, Yang H, Zhu Y (2006) Fabrication and photoelectrochemical properties of porous ZnWO4 film. J Solid State Chem 179(8):2562–2570

    Article  CAS  Google Scholar 

  26. Manukumar K, Nagaraju G, Kishore B, Madhu C, Munichandraiah N (2018) Ionic liquid-assisted hydrothermal synthesis of SnS nanoparticles: electrode materials for lithium batteries, photoluminescence and photocatalytic activities. J Energy Chem 27(3):806–812

    Article  Google Scholar 

  27. Sharma RK, Chouryal YN, Chaudhari S, Saravanakumar J, Dey SR, Ghosh P (2017) Adsorption-driven catalytic and photocatalytic activity of phase tuned In2S3 nanocrystals synthesized via ionic liquids. ACS Appl Mater Interfaces 9(13):11651–11661

    Article  CAS  PubMed  Google Scholar 

  28. Yamada T, Sukegawa Y, Wagata H, Yubuta K, Teshima K (2016) Facile growth of centimeter-order, highly crystalline ZnWO4 single crystals by the flux evaporation technique using molten NaCl. CrystEngComm 18(44):8608–8613

    Article  CAS  Google Scholar 

  29. Rahimi-Nasrabadi M, Pourmortazavi SM, Ganjali MR, Hajimirsadeghi SS, Zahedi MM (2013) Electrosynthesis and characterization of zinc tungstate nanoparticles. J Mol Struct 1047:31–36

    Article  CAS  Google Scholar 

  30. Pavithra N, Nagaraju G, Viswanatha R (2018) Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: Anode for Li-ion battery and photocatalytic activities. Eur Phys J Plus 133(12):1–9

    Article  CAS  Google Scholar 

  31. Severo EdC, Abaide ER, Anchieta CG, Foletto VS, Weber CT, Garlet TB, Collazzo GC, Mazutti MA, Gündel A, Kuhn RC (2016) Preparation of zinc tungstate (ZnWO4) particles by solvo-hydrothermal technique and their application as support for inulinase immobilization. Mater Res 19(4):781–785

    Article  CAS  Google Scholar 

  32. Wang Y, Liping L, Li G (2017) Solvothermal synthesis, characterization and photocatalytic performance of Zn-rich ZnWO4 nanocrystals. Appl Surf Sci 393:159–167

    Article  CAS  Google Scholar 

  33. Yan W, Zhang S-c, Zhang L-w, Zhu Y-f (2007) Photocatalytic activity of nanosized ZnWO4 prepared by the sol-gel method. Chem Res Chin Univ 23(4):465–468

    Article  Google Scholar 

  34. Amouzegar Z, Naghizadeh R, Rezaie H, Ghahari M, Aminzare M (2015) Cubic ZnWO4 nano-photocatalysts synthesized by the microwave-assisted precipitation technique. Ceram Int 41(1):1743–1747

    Article  CAS  Google Scholar 

  35. Atuchin V (2012) Comment on “Particle size and structural control of ZnWO4 nanocrystals via Sn2+ doping for tunable optical and visible photocatalytic properties.” J Phys Chem C 116(49):26106–26107

    Article  CAS  Google Scholar 

  36. Bai X, Wang L, Zhu Y (2012) Visible photocatalytic activity enhancement of ZnWO4 by graphene hybridization. ACS Catal 2(12):2769–2778

    Article  CAS  Google Scholar 

  37. Fu H, Lin J, Zhang L, Zhu Y (2006) Photocatalytic activities of a novel ZnWO4 catalyst prepared by a hydrothermal process. Appl Catal A 306:58–67

    Article  CAS  Google Scholar 

  38. Gao B, Fan H, Zhang X, Song L (2012) Template-free hydrothermal synthesis and high photocatalytic activity of ZnWO4 nanorods. Mater Sci Eng, B 177(13):1126–1132

    Article  CAS  Google Scholar 

  39. Huang G, Zhu Y (2007) Synthesis and photocatalytic performance of ZnWO4 catalyst. Mater Sci Eng, B 139(2–3):201–208

    Article  CAS  Google Scholar 

  40. Pavithra N, Nagaraju G, Viswanatha R (2018) Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: Anode for Li-ion battery and photocatalytic activities. Eur Phys J Plus 133(12):498

    Article  CAS  Google Scholar 

  41. Mohamed MJS, Bhat DK (2017) Novel ZnWO4/RGO nanocomposite as high performance photocatalyst. AIMS Mater Sci 4(1):158

    Article  CAS  Google Scholar 

  42. Suresh D, Nethravathi P, Kumar MP, Naika HR, Nagabhushana H, Sharma S (2015) Chironji mediated facile green synthesis of ZnO nanoparticles and their photoluminescence, photodegradative, antimicrobial and antioxidant activities. Mater Sci Semicond Process 40:759–765

    Article  CAS  Google Scholar 

  43. Zheng JY, Haider Z, Van TK, Pawar AU, Kang MJ, Kim CW, Kang YS (2015) Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 17(32):6070–6093

    Article  CAS  Google Scholar 

  44. Yadav LR, Raghavendra M, Manjunath K, Nagaraju G (2018) Photocatalytic, biodiesel, electrochemical sensing properties and formylation reactions of ZnO nanoparticles synthesized via eco-friendly green synthesis method. J Mater Sci Mater Electron 29(10):8747–8759

    Article  CAS  Google Scholar 

Download references

Funding

N S Pavithra thanks the COE–TEQIP-2, SIT Tumakuru for the financial support to carry out this research work. One of the authors Dr. G Nagaraju thanks the DST Nanomission, Govt. of India (No.SR/NM/NS-1262/2013), New Delhi for the financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavithra, N.S., Nagaraju, G. & Patil, S.B. Ionic liquid-assisted hydrothermal synthesis of ZnWO4 nanoparticles used for photocatalytic applications. Ionics 27, 3533–3541 (2021). https://doi.org/10.1007/s11581-021-04123-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04123-9

Keywords

Navigation