Skip to main content
Log in

Fabrication of metal-organic frameworks-derived porous NiCo2O4 nanofibers for high lithium storage properties

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, the NiCo2O4 nanofibers derived from metal-organic frameworks (MOFs) are produced through electrospinning, in situ growth with following calcination. The electrode materials with various morphologies are developed by adjusting the in situ growth duration. The NiCo2O4-6 (NCO-6) nanofibers grown for 6 h exhibit large specific surface area (SSA, 151 m2 g−1) and massive pore structures. Upon applying as anode for LIBs, high discharge capacities of 1584 and 877 mAh g−1 are delivered in the first and 300th cycle at 0.3 A g−1. After cycling at different current densities ranging from 0.3 to 1.2 A g−1, the reversible capacity of 970 mAh g−1 is sustained once the current density is reversed to 0.3 A g−1. Such an excellent cycle and rate stability of the prepared NCO-6 electrode is attributed to its distinct structure which significantly reliefs the volume expansion and consequently improves lithium-ion intercalation/deintercalation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fei RX, Wang HW, Wang Q, Qiu RY, Tang SS, Wang R, He BB, Gong YS, Fan HJ (2020) In situ hard-template synthesis of hollow bowl-like carbon: a potential versatile platform for sodium and zinc ion capacitors. Adv Energy Mater 10:2002741

    Article  CAS  Google Scholar 

  2. Mao ZF, Wang HW, Chao DL, Wang R, He BB, Gong YS, Fan HJ (2020) Al2O3-assisted confinement synthesis of oxide/carbon hollow composite nanofibers and application in metal-ion capacitors. Small 16:2001950

    Article  CAS  Google Scholar 

  3. Wang HW, Xu DM, Jia GC, Mao ZF, Gong YS, He BB, Wang R, Fan HJ (2020) Integration of flexibility, cyclability and high-capacity into one electrode for sodium-ion hybrid capacitors with low self-discharge rate. Energy Storage Mater 25:114–123

    Article  Google Scholar 

  4. Pathak R, Chen K, Gurung A, Reza KM, Bahrami B, Pokharel J, Baniya A, He W, Wu F, Zhou Y, Xu K, Qiao QQ (2020) Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nat Commun 11:93

    Article  CAS  Google Scholar 

  5. Pathak R, Chen K, Gurung A, Reza KM, Bahrami B, Wu F, Chaudhary A, Ghimire N, Zhou B, Zhang WH, Zhou Y, Qiao QQ (2019) Ultrathin bilayer of graphite/SiO2 as solid interface for reviving Li metal anode. Adv Energy Mater 9:1901486

    Article  Google Scholar 

  6. Wu HB, Chen JS, Hng HH, Lou XW (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4:2526–2542

    Article  CAS  Google Scholar 

  7. Hsu CT, Hu CC (2013) Synthesis and characterization of mesoporous spinel NiCo2O4 using surfactant-assembled dispersion for asymmetric supercapacitors. J Power Sources 242:662–671

    Article  CAS  Google Scholar 

  8. Maduraiveeran G, Sasidharan M, Jin W (2019) Earth-abundant transition metal and metal oxide nanomaterials: synthesis and electrochemical applications. Prog Mater Sci 106:100574

    Article  CAS  Google Scholar 

  9. Ji LW, Lin Z, Alcoutlabi M, Zhang XW (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  10. Cheong JY, Koo WT, Kim C, Jung JW, Kim ID (2018) Feasible defect engineering by employing metal organic framework templates into one-dimensional metal oxides for battery applications. ACS Appl Mater Interfaces 10:20540–20549

    Article  CAS  Google Scholar 

  11. Cai DP, Liu B, Wang DD, Wang LL, Liu Y, Qu BH, Duan XC, Li QH, Wang TH (2016) Rational synthesis of metal–organic framework composites, hollow structures and their derived porous mixed metal oxide hollow structures. J Mater Chem A 4:183–192

    Article  CAS  Google Scholar 

  12. Bradshaw D, Garai A, Huo J (2012) Metal–organic framework growth at functional interfaces: thin films and composites for diverse applications. Chem Soc Rev 41:2344–2381

    Article  CAS  Google Scholar 

  13. Xu KQ, Ma LB, Shen XP, Ji ZY, Yuan AH, Kong LR, Zhu GX, Zhu J (2019) Bimetallic metal-organic framework derived Sn-based nanocomposites for high-performance lithium storage. Electrochim Acta 323:134855

    Article  CAS  Google Scholar 

  14. Jung JW, Lee CL, Yu S, Kim ID (2016) Electrospun nanofibers as a platform for advanced secondary batteries: a comprehensive review. J Mater Chem A 4:703–750

    Article  CAS  Google Scholar 

  15. Patil JV, Mali SS, Kamble AS, Hong CK, Kim JH, Patil PS (2017) Electrospinning: a versatile technique for making of 1D growth of nanostructured nanofibers and its applications: an experimental approach. Appl Surf Sci 423:641–674

    Article  CAS  Google Scholar 

  16. Liu YC, Jiang JT, Yuan YY, Jiang QL, Yan C (2019) Vertically aligned NiCo2O4 nanosheet-encapsulated carbon fibers as a self-supported electrode for superior Li+ storage performance. Nanomaterials 9:1336

    Article  CAS  Google Scholar 

  17. Sun XM, Gao G, Yan DW, Feng CQ (2017) Synthesis and electrochemical properties of Fe3O4@MOF core-shell microspheres as an anode for lithium ion battery application. Appl Surf Sci 405:52–59

    Article  CAS  Google Scholar 

  18. Li C, Hu XS, Lou XB, Zhang LJ, Wang Y, Amoureux JP, Shen M, Chen Q, Hu BW (2016) The organic-moiety-dominated Li+ intercalation/deintercalation mechanism of a cobalt-based metal–organic framework. J Mater Chem A 4:16245–16251

    Article  CAS  Google Scholar 

  19. Zhang YW, Xiao XZ, Zhang W, Liu YJ, Zhong JY, Chen M, Fan XL, Chen LX (2019) Facile formation of NiCo2O4 yolk-shell spheres for highly reversible sodium storage. J Alloys Compd 800:125–133

    Article  CAS  Google Scholar 

  20. Yang F, Li WY, Tang BHJ (2018) Two-step method to synthesize spinel Co3O4-MnCo2O4 with excellent performance for lithium ion batteries. Chem Eng J 334:2021–2029

    Article  CAS  Google Scholar 

  21. Zhao JJ, Quan X, Chen S, Liu YM, Yu HT (2017) Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Appl Mater Interfaces 9:28685–28694

    Article  CAS  Google Scholar 

  22. Li YH, Wu XW, Wang SL, Wang WQ, Xiang YH, Dai CH, Liu ZX, He ZQ, Wu XM (2017) Surfactant-assisted solvothermal synthesis of NiCo2O4 as an anode for lithium-ion batteries. RSC Adv 7:36909–36916

    Article  CAS  Google Scholar 

  23. Tang QM, Shi YH, Ding ZY, Wu TH, Wu JW, Mattick V, Yuan QH, Yu HJ, Huang K (2020) Three-dimensional hierarchical graphene and CNT-coated spinel ZnMn2O4 as a high-stability anode for lithium-ion batteries. Electrochim Acta 338:135853

    Article  CAS  Google Scholar 

  24. Zhang J, Chen YL, Chu RX, Jiang H, Zeng YB, Zhang Y, Huang NM, Guo H (2019) Pseudocapacitive P-doped NiCo2O4 microspheres as stable anode for lithium ion batteries. J Alloys Compd 787:1051–1062

    Article  CAS  Google Scholar 

  25. Li Y, Kong LB, Liu MC, Kang L (2016) Facile synthesis of a nickel vanadate/Ni composite and its electrochemical performance as an anode for lithium ion batteries. RSC Adv 6:90197–90205

    Article  CAS  Google Scholar 

  26. Chen K, Pathak R, Gurung A, Adhamash EA, Bahrami B, He QQ, Qiao H, Smirnova AL, Wu JJ, Qiao QQ, Zhou Y (2019) Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Mater 18:389–396

    Article  Google Scholar 

  27. Chen K, Pathak R, Gurung A, Reza KM, Ghimire N, Pokharel J, Baniya A, He W, Wu JJ, Qiao QQ, Zhou Y (2020) A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. J Mater Chem A 8:1911–1919

    Article  CAS  Google Scholar 

  28. Chen YM, Yu L, Lou XW (2016) Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angew Chem Int Ed 55:5990–5993

    Article  CAS  Google Scholar 

  29. Pathak R, Gurung A, Elbohy H, Chen K, Reza KM, Bahrami B, Mabrouk S, Ghimire R, Hummel M, Gu ZR, Wang XM, Wu YC, Zhou Y, Qiao QQ (2018) Self-recovery in Li-metal hybrid lithium-ion batteries via WO3 reduction. Nanoscale 10:15956–15966

    Article  CAS  Google Scholar 

  30. Pathak R, Zhou Y, Qiao QQ (2020) Recent advances in lithiophilic porous framework toward dendrite-free lithium metal anode. Appl Sci 10:4185

    Article  CAS  Google Scholar 

  31. Mondal AK, Su DW, Chen SQ, Xie XQ, Wang GX (2014) Highly porous NiCo2O4 nanoflakes and nanobelts as anode materials for lithium-ion batteries with excellent rate capability. ACS Appl Mater Interfaces 6:14827–14835

    Article  CAS  Google Scholar 

  32. Han X, Gui X, Yia TF, Li YW, Yue CB (2018) Recent progress of NiCo2O4-based anodes for high-performance lithium-ion batteries. Curr Opin Solid ST M 22:109–126

    Article  CAS  Google Scholar 

  33. NuLi YN, Zhang P, Guo ZP, Liu HK, Yang J (2008) NiCo2O4/C nanocomposite as a highly reversible anode material for lithium-ion batteries. Electrochem Solid ST 11:A64–A67

    Article  CAS  Google Scholar 

  34. Li JF, Xiong SL, Liu YR, Ju ZC, Qian YT (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5:981–988

    Article  CAS  Google Scholar 

  35. Santhoshkumar P, Prasanna K, Jo YN, Sivagami IN, Kang SH, Lee CW (2019) Hierarchically structured mesoporous bimetallic oxides as a potential anode material for rechargeable lithium batteries. J Alloys Compd 771:555–564

    Article  CAS  Google Scholar 

  36. Wang ZQ, Zhang M, Zhou J (2016) Flexible NiO-graphene-carbon fiber mats containing multifunctional graphene for high stability and high specific capacity lithium-ion storage. ACS Appl Mater Interfaces 8:11507–11515

    Article  CAS  Google Scholar 

  37. Zhang Z, Huang Y, Yan J, Li C, Chen XF, Zhu YD (2019) A facile synthesis of 3D flower-like NiCo2O4@MnO2 composites as an anode material for Li-ion batteries. Appl Surf Sci 473:266–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Jiangsu Province (BK20201343), China Postdoctoral Science Foundation (2018T110442 and 2017M610296), National Natural Science Foundation of China (21201083), Project of Hubei University of Arts and Science (XK2021025), and Science and Technology Research Project of Department of Education of Hubei Province (B2019139).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Qiao or Keliang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Liu, K., Shi, C. et al. Fabrication of metal-organic frameworks-derived porous NiCo2O4 nanofibers for high lithium storage properties. Ionics 27, 3219–3229 (2021). https://doi.org/10.1007/s11581-021-04120-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04120-y

Keywords

Navigation