Skip to main content

Advertisement

Log in

Reduced graphene oxide decorated amorphous NiS2 nanosheets as high-performance anode materials for enhanced sodium-ion hybrid capacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sodium-ion hybrid capacitors (SICs) combined two advantages of decent specific power of supercapacitors and specific energy of batteries have drawn much attention. Nevertheless, preparing suitable anodes for SICs is currently a main challenge due to that the large Na+ radius that will lead to a terrible volume expansion and sluggish reaction kinetics. To solve the above issues, we meticulously prepare reduced graphene oxide supporting amorphous NiS2 nanosheets (NiS2/rGO) composite by hydrothermal method. When used as anodes for sodium-ion battery, NiS2/rGO exhibits excellent specific capacity of 343.9 mA h g−1 at 0.1 A g−1 after 50 cycles. The structural evolution and pseudocapacitive contribution are analyzed through ex-situ XRD and CV analysis techniques. Simultaneously, the SICs assembled with biomass-derived porous carbon cathodes and NiS2/rGO anodes display superior specific energy and power with excellent cycling stability. Therefore, NiS2/rGO composite based on amorphous structure is a promising anode to promote the commercialization process of SICs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhai PY, Huang JQ, Zhu L, Shi JL, Zhu W, Zhang Q (2017) Calendering of free-standing electrode for lithium-sulfur batteries with high volumetric energy density. Carbon 111:493–501

    Article  CAS  Google Scholar 

  2. Zheng FH, Yang CH, Xiong XH, Xiong JW, Hu RZ, Chen Y, Liu ML (2015) Nanoscale surface modification of lithium-rich layered-oxide composite cathodes for suppressing voltage fade. Angew Chem Int Ed 54:13058–13062

    Article  CAS  Google Scholar 

  3. Yang CH, Ou X, Xiong XH, Zheng FH, Hu RZ, Chen Y, Liu ML, Huang KV (2017) V5S8-graphite hybrid nanosheets as a high rate-capacity and stable anode material for sodium-ion batteries. Energy Environ Sci 10:107–113

    Article  CAS  Google Scholar 

  4. Ou X, Yang CH, Xiong XH, Zheng FH, Pan QC, Jin C, Liu ML, Huang KV (2017) A new rGO-overcoated Sb2Se3 nanorods anode for Na+ battery: in situ X-ray diffraction study on a live sodiation/desodiation process. Adv Func Mater 27:1606242

    Article  CAS  Google Scholar 

  5. Wang B, Abdulla WA, Wang D, Zhao XS (2015) Three-dimensional porous LiFePO4 cathode material modified with nitrogen-doped graphene aerogel for high-power lithium ion batteries. Energy Environ Sci 8:869–875

    Article  CAS  Google Scholar 

  6. Wang MS, Peng A, Xu H, Yang ZL, Zhang L, Zhang J, Yang H, Chen JC, Huang Y, Li X (2020) Amorphous SnSe quantum dots anchoring on graphene as high performance anodes for battery/capacitor sodium ion storage. J Power Sources 469:228414

    Article  CAS  Google Scholar 

  7. Zhang M, Wang C, Wang H, Jian M, Hao X, Zhang Y (2017) Carbonized cotton fabric for high-performance wearable strain sensors. Adv Func Mater 27:1604795

    Article  CAS  Google Scholar 

  8. Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10:1594–1597

    Article  CAS  Google Scholar 

  9. Hu S, Zhang S, Pan N, Hsieh YL (2014) High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes. J Power Sources 270:106–112

    Article  CAS  Google Scholar 

  10. Hou H, Qiu X, Wei W et al (2017) Carbon anode materials for advanced sodium-ion batteries. Adv Energy Mater 7:1602898

    Article  CAS  Google Scholar 

  11. Wu XH, Wu WW, Li YN, Li F, Liao S (2015) Synthesis and electrochemical performance of rod-like CuFe2O4 as an anode material for Na-ion battery. Mater Lett 138:192–195

    Article  CAS  Google Scholar 

  12. Wu XH, Wu WW, Wang KT, Chen W, He D (2015) Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries. Mater Lett 147:85–87

    Article  CAS  Google Scholar 

  13. Lu XX, Wu GL, Xiong QQ, Qin HY, Ji ZG, Pan HG (2017) Environmental friendly scalable production of colloidal 2D titanium carbonitride MXene with minimized nanosheets restacking for excellent cycle life lithium-ion batteries. Electrochim Acta 245:587–596

    Article  CAS  Google Scholar 

  14. Wen SY, Zhao JC, Zhao Y, Xu TT, Xu JL (2018) Reduced graphene oxide (RGO) decorated Sb2S3 nanorods as anode material for sodium-ion batteries. Chem Phys Lett 716:171–176

    Article  CAS  Google Scholar 

  15. Li H, Wang YH, Jiang JL, Zhang YY, Peng YY, Zhao JB (2017) CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim Acta 247:851–859

    Article  CAS  Google Scholar 

  16. Go DY, Park JS, Noh PJ, Cho GB, Ryu HS, Nam TH et al (2014) Electrochemical properties of monolithic nickel sulfide electrodes for use in sodium batteries. Mater Res Bull 58:190–194

    Article  CAS  Google Scholar 

  17. Shi L D, Li D Z, Yao P P, Yu J L, Li C H, Yang B, Zhu C Z, Xu J (2018) SnS2 nanosheets coating on nanohollow cubic CoS2/C for ultralong life and high rate capability half/full sodium-ion batteries. Small 1802716

  18. Gao JY, Li YP, Liu Y, Jiao SH, Li J, Wang GR, Zeng SY, Zhang GQ (2019) Dual-function sacrificing template directed formation of MoS2/C hybrid nanotubes enabling highly stable and ultrafast sodium storage. Journal of Materials Chemistry A 7:18828–18834

    Article  CAS  Google Scholar 

  19. Zhang Y, Zhou Q, Zhu JX, Yan QY, Dou SX, Sun W (2017) Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv Func Mater 27:1702317

    Article  CAS  Google Scholar 

  20. Klein F, Jache B, Bhide A, Adelhelm P (2013) Conversion reactions for sodium-ion batteries. Chem Phys 15:15876–15887

    CAS  Google Scholar 

  21. Qiu B, Zhao X, Xia D (2013) In situ synthesis of CoS2/RGO nanocomposites with enhanced electrode performance for lithium-ion batteries. J Alloy Compd 579:372–376

    Article  CAS  Google Scholar 

  22. Wang Q, Zou R, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y, Xia D, Xu Q (2015) Facile synthesis of ultrasmall CoS2 nanosheets within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small 11:2511–2517

    Article  CAS  PubMed  Google Scholar 

  23. Fan XL, Y J, H F D, et al (2018) High-performance all-solid-state Na-S battery enabled by casting-annealing technology. ACS Nano 12:3360–3368

    Article  CAS  PubMed  Google Scholar 

  24. Zhang LF, Zhang JZ, Liu Y, Zheng P, Yuan XY, Guo SW (2016) Al doped-ZnO nanosheets implanted in reduced graphene oxide with improved electrochemical properties for lithium ion batteries. Mater Lett 165:165–168

    Article  CAS  Google Scholar 

  25. Yuvaraj S, Veerasubramani G K, Park M, Thangavel P, Kim D W (2020) Facile synthesis of FeS2/MoS2 composite intertwined on rGO nanosheets as a high-performance anode material for sodium-ion battery. Journal of Alloys and Compounds 821:153222

  26. Xie KY, Li L, Deng X, Zhou W, Shao ZP (2017) A strongly coupled CoS2/reduced graphene oxide nanostructure as an anode material for efficient sodium-ion batteries. J Alloy Compd 726:394–402

    Article  CAS  Google Scholar 

  27. Wang X, Li XY, Li Q, Li HS, Xu J, Wang H, Zhao GX, Lu LS, Lin XY, Li HL, Li SD (2018) Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Letters 10:46–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Manthiram A, Jeong YU (1999) Ambient temperature synthesis of spinel Ni3S4: an itinerant electron ferrimagnet. J Solid State Chem 147:679–681

    Article  CAS  Google Scholar 

  29. Zhu Q, Chen WZ, Cheng H, Lu ZG, Pan H (2019) WS2 Nanosheets with highly-enhanced electrochemical activity by facile control of sulfur vacancies. ChemCatChem 11:2667–2675

    Article  CAS  Google Scholar 

  30. Uchaker E, Zheng YZ, Li S, Candelaria SL, Hu S, Cao GZ (2014) Better than crystalline: amorphous vanadium oxide for sodium-ion battery. Journal of Materials Chemistry A 00:1–3

    Google Scholar 

  31. Zhao J, Wang G L, Cheng K, Ye K, Zhu K, Yan J, Cao D X, Wang H E (2020) Growing NiS2 nanosheets on porous carbon microtubes for hybrid sodium-ion capacitors. Journal of Power Sources 451:227737

  32. Ye H L, Wang L, Deng S, Zeng X Q, Nie K Q, N. Duchesne P, Wang B, Liu S M, Zhou J H, Zhao F P, Han N, Zhang P, Zhong J, Sun X H, Li Y Y, Li Y G, Lu J (2017) Amorphous MoS3 infiltrated with carbon nanotubes as an advanced anode material of sodium-ion batteries with large gravimetric, areal, and volumetric capacities. Advanced Energy Materials 7, 1601602

  33. Zhu CB, Wen YR, Aken PAV, Maier J, Yu Y (2015) High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires. Adv Func Mater 25:2335–2342

    Article  CAS  Google Scholar 

  34. Wei W, Mi L, Gao Y, Zheng Z, Chen W, Guan X (2014) Partial ion-exchange of nickel-sulfide-derived electrodes for high performance supercapacitors. Chem Mater 26:3418–3426

    Article  CAS  Google Scholar 

  35. Liu X, Zou F, Liu K, Qiang Z, Taubert CJ, Ustriyana P, Vogt BD, Zhu Y (2017) Binary metal organic frameworks derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance. Journal of Materials Chemistry A 5:11781–11787

    Article  CAS  Google Scholar 

  36. Wang Q, Zhang W, Guo C, Liu Y, Wang C, Guo Z (2017) In situ construction of 3D interconnected FeS@Fe3C@graphitic carbon networks for high-performance sodium-ion batteries. Adv Func Mater 27:1703390

    Article  CAS  Google Scholar 

  37. Ma J, Liu Q, Chen D, Zhou Y, Wen S (2014) Carbon dioxide adsorption using amine-functionalized mesocellular siliceous foams. J Mater Sci 49:7585–7596

    Article  CAS  Google Scholar 

  38. Zhao X, Wang H E, Massé R C, Cao J, Sui J, Li J, Cai W, Cao G (2017) Design of coherent anode materials with 0D Ni3Snanosheets self-assembled on 3D interconnected carbon networks for fast and reversible sodium storage. Journal of Materials Chemistry A 5:7394-7402

  39. Wang T, Hu P, Zhang C, Du H, Zhang Z, Wang X, Chen S, Xiong J, Cui G (2016) Nickel disulfide-graphene nanosheets composites with improved electrochemical performance for sodium ion battery. ACS Appl Mater Interfaces 8:7811–7817

    Article  CAS  PubMed  Google Scholar 

  40. Sun R, Liu S, Wei Q, Sheng J, Zhu S, An Q, Mai L (2017) Mesoporous NiS2 nanospheres anode with pseudocapacitance for high-rate and long-life sodium-ion battery. Small 13:1701744

    Article  CAS  Google Scholar 

  41. Choi NS, Yao Y, Cui Y, Cho J (2011) One dimensional Si/Sn-based nanowires and nanotubes for lithium-ion energy storage materials. J Mater Chem 21:9825–9840

    Article  CAS  Google Scholar 

  42. Park GD, Cho JS, Kang YC et al (2015) Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 7:16781–16788

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Xu YG, Kong LB (2020) Synthesis of polyvalent ion reaction of MoS2/CoS2-RGO anode materials for high-performance sodium-ion batteries and sodium-ion capacitors. J Colloid Interface Sci 575:42–53

    Article  CAS  PubMed  Google Scholar 

  44. Wang XT, Shi WX, Wang SX, Zhao HW, Lin J, Yang Z, Chen M, Guo L (2019) Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc 141:5856–5862

    Article  CAS  PubMed  Google Scholar 

  45. Wang G, Liu ZY, Liu P (2011) Co2SnO4-multiwalled carbon nanotubes composite as a highly reversible anode material for lithium-ion batteries. Electrochim Acta 56:9515–9519

    Article  CAS  Google Scholar 

  46. Zeng X, Ding Z, Ma C, Wu L, Liu J, Chen L, Ivey DG, Wei W (2016) Hierarchical nanocomposite of hollow N-doped carbon spheres decorated with ultrathin WS2 nanosheets for high-performance lithium-ion battery anode. ACS Appl Mater Interfaces 8:18841–18848

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Pan A, Ding L, Zhou Z, Wang Y, Niu S, Liang S, Cao G (2017) Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Interfaces 9:3624–3633

    Article  CAS  PubMed  Google Scholar 

  48. Peng S, Han X, Li L, Zhu Z, Cheng F, Srinivansan M, Adams S, Ramakrishna S (2016) Unique cobalt sulfide/reduced graphene oxide composite as an anode for sodium-ion batteries with superior rate capability and long cycling stability. Small 12:1359–1368

    Article  CAS  PubMed  Google Scholar 

  49. Shadike Z, Cao MH, Ding F, Sang L, Fu ZW (2015) Improved electrochemical performance of CoS2-MWCNT nanocomposites for sodium-ion batteries. Chem Commun 51:10486–10489

    Article  CAS  Google Scholar 

  50. Chen Y, Zhang W, Zhou D, Tian H, Su D, Wang C, Stockdale D, Kang F, Li B, Wang G (2019) Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 13:4731–4741

    Article  CAS  PubMed  Google Scholar 

  51. Kong L, Zhang C, Wang J et al (2015) Free-standing T-Nb2O5/graphene composite papers with ultrahigh gravimetric/volumetric capacitance for Li-ion intercalation pseudocapacitor. ACS Nano 9:11200–11208

    Article  CAS  PubMed  Google Scholar 

  52. Zhao C, Yu C, Zhang M, Huang H, Li S, Han X, Liu Z, Yang J, Xiao W, Liang J, Sun X, Qiu J (2017) Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance. Adv Energy Mater 7:1602880

    Article  CAS  Google Scholar 

  53. Chen Z, Wu R, Wang H, Jiang Y, Jin L, Guo Y, Song Y, Fang F, Sun D (2017) Construction of hybrid hollow architectures by in-situ rooting ultrafine ZnS nanorods within porous carbon polyhedra for enhanced lithium storage properties. Chem Eng J 326:680–690

    Article  CAS  Google Scholar 

  54. Su D, Kretschmer K, Wang G (2016) Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 6:1501785

    Article  CAS  Google Scholar 

  55. Fu L, Tang K, Song K et al (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389

    Article  CAS  PubMed  Google Scholar 

  56. Kumaresan TK, Masilamani SA, Raman K, Karazhanov SZ, Subashchandrabose R (2021) High performance sodium-ion battery anode using biomass derived hard carbon with engineered defective sites. Electrochimica Acta 368:137574

    Article  CAS  Google Scholar 

  57. Qiu RY, Fei RX, Zhang TQ, Liu XL, Jin J, Fan HS, Wang R, He BB, Gong YS, Wang HW (2020) Biomass-derived 3D interconnected N-doped carbon foam as a host matrix for Li/Na/K-selenium batteries. Electrochimica Acta 356:136832

    Article  CAS  Google Scholar 

  58. Peng X, Wang L, Zhang X, Gao B, Fu J, Xiao S, Huo K, Chu PK (2015) Reduced graphene oxide encapsulated selenium nanosheets for high-power lithium-selenium battery cathode. J Power Sources 288:214–220

    Article  CAS  Google Scholar 

  59. Li ZJ, Guo DF, Liu YY, Wang HY, Wang LL (2020) Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chemical Engineering Journal 397:125418

    Article  CAS  Google Scholar 

  60. Zhu YE, Yang LP, Sheng J, Chen YN, Gu HC, Wei JP, Zhou Z (2017) Fast sodium storage in TiO2@CNT@C nanorods for high performance Na-ion capacitors. Adv Energy Mater 7:1701222–1701230

    Article  CAS  Google Scholar 

  61. Kim H, Cho M, Kim M, Park K, Gwon H, Lee Y (2013) A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 3:1500–1506

    Article  CAS  Google Scholar 

  62. Chen SM, Yang G, Jia Y, Zheng HJ (2017) Three-dimensional NiCo2O4@NiWO4 core-shell nanowire arrays for high performance supercapacitors. Journal of Materials Chemistry A 5:1028–1034

    Article  CAS  Google Scholar 

  63. Chen SM, Yang G, Zheng HJ (2016) Aligned Ni-Co-Mn oxide nanosheets grown on conductive substrates as binder-free electrodes for high capacity electrochemical energy storage devices. Electrochim Acta 220:296–303

    Article  CAS  Google Scholar 

  64. Tao X, Du J, Sun Y, Zhou S, Xia Y, Huang H, Gan Y, Zhang W, Li X (2013) Exploring the energy storage mechanism of high performance MnO2 electrochemical capacitor electrodes: an in situ atomic force microscopy study in aqueous electrolyte. Adv Func Mater 23:4745–4751

    CAS  Google Scholar 

  65. Kim MS, Lim E, Kim S, Jo CS, Chun JY, Lee J (2016) General synthesis of N-doped macroporous graphene encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv Func Mater 03:921–927

    Google Scholar 

  66. Chen Z, Augustyn V, Jia XL, Xiao QF, Dunn B, Lu YF (2012) High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6:4319–4327

    Article  CAS  PubMed  Google Scholar 

  67. Ding R, Qi L, Wang HY (2013) An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim Acta 114:726–735

    Article  CAS  Google Scholar 

  68. Zhao X, Zhao YD, Liu ZH, Yang Y, Sui JH, Wang HE, Cai W, Cao GZ (2018) Synergistic coupling of lamellar MoSe2 and SnO2 nanosheets via chemical bonding at interface for stable and high-power sodium-ion capacitors. Chem Eng J 354:1164–1173

    Article  CAS  Google Scholar 

  69. Wang MS, Xu H, Yang ZL, Yang H, Peng A, Zhang J, Chen JC, Huang Y, Li X, Cao GZ (2017) SnS nanosheets confined growth by S and N co-doped graphene with enhanced pseudocapacitance for sodium-ion capacitors. ACS Appl Mater Interfaces 9:24545–24554

    Article  CAS  Google Scholar 

  70. Yin J, Qi L, Wang HY (2012) Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl Mater Interfaces 4:2762–2768

    Article  CAS  PubMed  Google Scholar 

  71. Wu YK, Chen H, Zhang LC, Li QL, Xu MW, Bao SJ (2019) Rough endoplasmic reticulum-like VSe2/rGO anode for superior sodium-ion capacitors. Inorganic Chemistry Frontiers 6:2935–2943

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51971104, 51762031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (2.42 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YG., Liu, J. & Kong, LB. Reduced graphene oxide decorated amorphous NiS2 nanosheets as high-performance anode materials for enhanced sodium-ion hybrid capacitors. Ionics 27, 3315–3325 (2021). https://doi.org/10.1007/s11581-021-04117-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04117-7

Keywords

Navigation