Skip to main content

Advertisement

Log in

Green preparation of hierarchical porous carbon with tunable pore size for supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

It is attractive to use green activators to prepare hierarchical porous carbon with controllable pore size distribution. Herein, we attempted plant ash as the activator to prepare hierarchical porous carbon through high-temperature carbonization and activation. The pore size of the obtained porous carbon varies from 1 to 7 nm with temperature. It has a high specific capacitance (387.8 F/g at 1 A/g) in 6 M KOH, showing high rate performance (capacitance retention rate of 73.2%, from 1 to 10 A/g). Then, it also exhibits excellent cycle stability after 10,000 cycles. The assembled symmetrical supercapacitor (PC-6/PC-6) has a high energy density of 23.25 Wh/kg in 1 M Na2SO4 solution when the power is 450 W/kg. In short, biomass as the green activator achieves high specific capacitance and excellent rate performance for the first time in supercapacitors. This work provides ideas for the green preparation of porous carbon with controlled pore size distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zu L, Zhang W, Qu L, Liu L, Li W, Yu A, Zhao D (2020) Mesoporous Materials for Electrochemical Energy Storage and Conversion. Adv Energy Mater 10:2002152

    Article  CAS  Google Scholar 

  2. Chen L, Zhang X, Liang H, Kong M, Guan Q, Chen P, Wu Z, Yu S (2012) Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors. ACS Nano 6:7092–7102

    Article  CAS  PubMed  Google Scholar 

  3. Lin T, Chen I, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350:1508–1513

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous Graphitic Carbon Nanosheets Derived from Cornstalk Biomass for Advanced Supercapacitors. Chemsuschem 6:880–889

    Article  CAS  PubMed  Google Scholar 

  5. Divya ML, Natarajan S, Lee Y, Aravindan V (2019) Biomass‐Derived Carbon: A Value‐Added Journey Towards Constructing High‐Energy Supercapacitors in an Asymmetric Fashion. ChemSusChem 12:4353–4382

    Article  CAS  PubMed  Google Scholar 

  6. Jian Y, Wenli Z, Nuha AA, Numan S, Husam NA (2020) Small Methods 4:1900853

    Article  Google Scholar 

  7. Qian W, Sun F, Xu Y, Qiu L, Liu C, Wang S, Yan F (2014) Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ Sci 7:379–386

    Article  CAS  Google Scholar 

  8. Tang D, Luo Y, Lei W, Xiang Q, Ren W, Song W, Chen K, Sun J (2018) Hierarchical porous carbon materials derived from waste lentinus edodes by a hybrid hydrothermal and molten salt process for supercapacitor applications. Appl Surf Sci 462:862–871

    Article  CAS  Google Scholar 

  9. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  10. Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19:1151–1163

    Article  CAS  PubMed  Google Scholar 

  11. Wu C, Xu J, Ding J, Yuan N, Yan P, Zhang R, Liu H (2016) Nano 11

  12. Long C, Chen X, Jiang L, Zhi L, Fan Z (2015) Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 12:141–151

    Article  CAS  Google Scholar 

  13. Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and Electrolytes for Advanced Supercapacitors. Adv Mater 26:2219–2251

    Article  CAS  PubMed  Google Scholar 

  14. Lu S, Jin M, Zhang Y, Niu Y, Gao J, Li C (2018) Chemically Exfoliating Biomass into a Graphene-like Porous Active Carbon with Rational Pore Structure, Good Conductivity, and Large Surface Area for High-Performance Supercapacitors. Adv Energy Mater 8:1702545

    Article  Google Scholar 

  15. Liu X, Ma C, Li J, Zielinska B, Kalenczuk RJ, Chen X, Chu PK, Tang T, Mijowska E (2019) Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors. J Power Sources 412:1–9

    Article  CAS  Google Scholar 

  16. Yu W, Wang H, Liu S, Mao N, Liu X, Shi J, Liu W, Chen S, Wang X (2016) N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes. J Mater Chem A 4:5973–5983

    Article  CAS  Google Scholar 

  17. Lin H, Liu Y, Chang Z, Yan S, Liu S, Han S (2020) A new method of synthesizing hemicellulose-derived porous activated carbon for high-performance supercapacitors. Microporous Mesoporous Mater 292:109707

    Article  CAS  Google Scholar 

  18. Hao P, Zhao Z, Tian J, Li H, Sang Y, Yu G, Cai H, Liu H, Wong CP, Umar A (2014) Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 6:12120–12129

    Article  CAS  PubMed  Google Scholar 

  19. Shang T, Xu Y, Li P, Han J, Wu Z, Tao Y, Yang Q (2020) A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy 70:104531

    Article  CAS  Google Scholar 

  20. Chang C, Li M, Wang H, Wang S, Liu X, Liu H, Li L (2019) A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. J Mater Chem A 7:19939–19949

    Article  CAS  Google Scholar 

  21. Zhang X, Li H, Qin B, Wang Q, Xing X, Yang D, Jin LE, Cao Q (2019) J Mater Chem A 7:3298–3306

    Article  CAS  Google Scholar 

  22. Xie L, Sun G, Su F, Guo X, Kong Q, Li X, Huang X, Wan L, Song W, Li K, Lv C, Chen C (2016) Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J Mater Chem A 4:1637–1646

    Article  CAS  Google Scholar 

  23. Jeon J, Zhang L, Lutkenhaus JL, Laskar DD, Lemmon JP, Choi D, Nandasiri MI, Hashmi A, Xu J, Motkuri RK, Fernandez CA, Liu J, Tucker MP, McGrail PB, Yang B, Nune SK (2015) Controlling Porosity in Lignin-Derived Nanoporous Carbon for Supercapacitor Applications. ChemSusChem 8:428–432

    Article  CAS  PubMed  Google Scholar 

  24. Jain A, Jayaraman S, Balasubramanian R, Srinivasa MP (2014) Hydrothermal pre-treatment for mesoporous carbon synthesis: enhancement of chemical activation. J Mater Chem A 2:520–528

    Article  CAS  Google Scholar 

  25. Wang C, Wang H, Dang B, Wang Z, Shen X, Li C, Sun Q (2020) Ultrahigh yield of nitrogen doped porous carbon from biomass waste for supercapacitor. Renew Energy 156:370–376

    Article  CAS  Google Scholar 

  26. Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1:6462–6470

    Article  CAS  Google Scholar 

  27. White RJ, Antonietti M, Titirici M (2009) Naturally inspired nitrogen doped porous carbon. J Mater Chem 19:8645–8650

    Article  CAS  Google Scholar 

  28. Xing B, Zhang C, Cao Y, Huang G, Liu Q, Zhang C, Chen Z, Yi G, Chen L, Yu J (2018) Preparation of synthetic graphite from bituminous coal as anode materials for high performance lithium-ion batteries. Fuel Process Technol 172:162–171

    Article  CAS  Google Scholar 

  29. Tian W, Gao Q, Zhang L, Yang C, Li Z, Tan Y, Qian W, Zhang H (2016) Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J Mater Chem A 4:8690–8699

    Article  CAS  Google Scholar 

  30. Xu J, Tan Z, Zeng W, Chen G, Wu S, Zhao Y, Ni K, Tao Z, Ikram M, Ji H, Zhu Y (2016) A Hierarchical Carbon Derived from Sponge-Templated Activation of Graphene Oxide for High-Performance Supercapacitor Electrodes. Adv Mater 28:5222–5228

    Article  CAS  PubMed  Google Scholar 

  31. Wang Z, Xing B, Zeng H, Huang G, Liu X, Guo H, Zhang C, Cao Y, Chen Z (2021) Appl Surf Sci 547

  32. Xing B, Zeng H, Huang G, Jia J, Yuan R, Zhang C, Sun Q, Cao Y, Chen Z, Liu B (2021) Electrochim Acta 376

  33. Xing B, Zhang C, Liu Q, Zhang C, Huang G, Guo H, Cao J, Cao Y, Yu J, Chen Z (2019) Green synthesis of porous graphitic carbons from coal tar pitch templated by nano-CaCO3 for high-performance lithium-ion batteries. J Alloys Compd 795:91–102

    Article  CAS  Google Scholar 

  34. Qu H, Zhang X, Zhan J, Sun W, Si Z, Chen H (2018) Biomass-Based Nitrogen-Doped Hollow Carbon Nanospheres Derived Directly from Glucose and Glucosamine: Structural Evolution and Supercapacitor Properties. ACS Sustain Chem Eng 6:7380–7389

    Article  CAS  Google Scholar 

  35. Rey-Raap N, Granja M A C, Pereira M F R, Figueiredo J L (2020) Phosphorus-doped carbon/carbon nanotube hybrids as high-performance electrodes for supercapacitors. Electrochimica Acta 354:136713

  36. Fang Y, Luo B, Jia Y, Li X, Wang B, Song Q, Kang F, Zhi L (2012) Renewing Functionalized Graphene as Electrodes for High-Performance Supercapacitors. Adv Mater 24:6348–6355

    Article  CAS  PubMed  Google Scholar 

  37. Zhao Y, Wei M, Zhu Z, Zhang J, Xiao L, Hou L (2020) Facile preparation of N-O codoped hierarchically porous carbon from alginate particles for high performance supercapacitor. J Colloid Interface Sci 563:414–425

    Article  CAS  PubMed  Google Scholar 

  38. Barbieri O, Hahn M, Herzog A, Kötz R (2005) Capacitance limits of high surface area activated carbons for double layer capacitors. Carbon 43:1303–1310

    Article  CAS  Google Scholar 

  39. Weingarth D, Zeiger M, Jäckel N, Aslan M, Feng G, Presser V (2014) Adv Energy Mater 4

  40. Wei X, Wei J, Li Y, Zou H (2019) Robust hierarchically interconnected porous carbons derived from discarded Rhus typhina fruits for ultrahigh capacitive performance supercapacitors. J Power Sour 414:13–23

  41. Xu B, Hou S, Cao G, Wu F, Yang Y (2012) Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J Mater Chem 22:19088–19093

    Article  CAS  Google Scholar 

  42. Wang YK, Zhang MK, Dai Y, Wang HQ, Zhang HY, Wang QQ, Hou WB, Yan H, Li WR, Zheng JC (2019) J Power Sources:438

  43. Peng C, Zeng T, Kuai Z, Li Z, Yu Y, Zuo J, Jin Y, Wang Y, Li L (2019) A Self-Activation Green Strategy to Fabricate N/P Co-Doped Carbon for Excellent Electrochemical Performance. J Electrochem Soc 166:A3287–A3293

    Article  CAS  Google Scholar 

  44. Gong Y, Li D, Fu Q, Zhang Y, Pan C (2020) Nitrogen Self-Doped Porous Carbon for High-Performance Supercapacitors. ACS Appl Energy Mater 3:1585–1592

    Article  CAS  Google Scholar 

  45. Fu FB, Yang DJ, Zhang WL, Wang H, Qiu XQ (2020) Chem Eng J 392

  46. Wang Q, Qin B, Li H, Zhang X, Tian X, Jin LE, Cao Q (2020) Microporous Mesoporous Mater 309:110551

    Article  CAS  Google Scholar 

  47. Zhao G, Chen C, Yu D, Sun L, Yang C, Zhang H, Sun Y, Besenbacher F, Yu M (2018) One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 47:547–555

    Article  CAS  Google Scholar 

  48. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 335:1326–1330

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Y, Ren X, Song M, Du Y, Wan J, Wu G, Ma F (2020) In-situ template cooperated with thiourea to prepare oxygen/nitrogen co-doped porous carbons with adjustable pore structure for supercapacitors. Renew Energy 153:1005–1015

    Article  CAS  Google Scholar 

  50. Yuan G, Guan K, Hu H, Lei B, Xiao Y, Dong H, Liang Y, Liu Y, Zheng M (2020) J Colloid Interface Sci 582:159–166

    Article  PubMed  Google Scholar 

  51. Rani MU, Nanaji K, Rao TN, Deshpande AS (2020) Corn husk derived activated carbon with enhanced electrochemical performance for high-voltage supercapacitors. J Power Sources 471:228387

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21978193), Shanxi Science and Technology Department (201805D131004), and the Shanxi Province Natural Science Foundation in China (No. 2013011012-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, Y., Zhang, R., Li, R. et al. Green preparation of hierarchical porous carbon with tunable pore size for supercapacitors. Ionics 27, 3077–3087 (2021). https://doi.org/10.1007/s11581-021-04091-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04091-0

Keywords

Navigation