Skip to main content
Log in

Transforming an end-of-life reverse osmosis membrane in a cationic exchange membrane and its application in a fungal microbial fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This article describes for the first time the elaboration of a cationic exchange membrane (CEM) from an end-of-life reverse osmosis (RO) membrane. The cationic exchange membrane has been prepared in two successive steps: (i) chlorine attack and (ii) filtration/adsorption of a polystyrene sulfonic acid (PSS) electrolyte solution. Physicochemical characterizations have been undertaken including (Na+) transference number (t(Na+)), diffusion flux measurements (Js), and cationic exchange capacity (CEC) determinations, as the properties encountered for a classical cationic exchange membrane. The hydraulic permeability (Lp) was also determined to characterize the molecular weight cut-off. This novel membrane denoted as ANIMAX has also been characterized by ATR-FTIR and SEM/AFM tools. We have utilized an old brackish water membrane denoted BW30 (stocked in bisulfite 1% for 10 years) to develop a new sulfonated UF membrane with a molecular cut-off of 55 kDa. We have observed that the roughness was divided by 2 (295 to 144nm) showing a lower propensity to fouling/biofouling of the novel membrane elaborated. As for the application, the newly synthesized membrane has been tested during 4 days of experiments in a fungal microbial fuel cell laboratory set-up vs Nafion© 117 the usual cationic membrane in MFC technology. We observed a lower external resistance with a value of 8 kOhm vs 37 kOhm for ANIMAX vs Nafion®117, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Garcia-Ivars J, Martella L, Massella M, Carbonell-Alcaina C, Alcaina-Miranda MI, Iborra-Clar MI (2017) Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants. Water Res 125:360–373. https://doi.org/10.1016/j.watres.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  2. Yan T, Ye Y, Ma H, Zhang Y, Guo W, du B, Wei Q, Wei D, Ngo HH (2018) A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem Eng J 348:143–156

    Article  CAS  Google Scholar 

  3. Somrani A, Hamzaoui AH, Pontie M (2013) Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317:184–192. https://doi.org/10.1016/j.desal.2013.03.009

    Article  CAS  Google Scholar 

  4. Quist-Jensen CA, Macedonio F, Drioli E (2015) Membrane technology for water production in agriculture: desalination and wastewater reuse. Desalination 364:17–32

    Article  CAS  Google Scholar 

  5. Landaburu-Aguirre J, García-Pacheco R, Molina S et al (2016) Fouling prevention, preparing for re-use and membrane recycling. Towards circular economy in RO desalination. Desalination 393:16–30. https://doi.org/10.1016/j.desal.2016.04.002

    Article  CAS  Google Scholar 

  6. Lawler W, Bradford-Hartke Z, Cran MJ, Duke M, Leslie G, Ladewig BP, le-Clech P (2012) Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination 299:103–112. https://doi.org/10.1016/j.desal.2012.05.030

    Article  CAS  Google Scholar 

  7. García-Pacheco R, Landaburu-Aguirre J, Terrero-Rodríguez P, Campos E., Molina-Serrano F., Rabadán J., Zarzo D., García-Calvo E. (2018) Validation of recycled membranes for treating brackish water at pilot scale. Desalination 199–208. https://doi.org/10.1016/j.desal.2017.12.034, 433

  8. Terrero P, García-Pacheco R, Pozuelo EC, et al (2015) Transformation of end-of-life RO membrane into recycled NF and UF membranes: results of the transformation process and its validation at pilot scale. Idawc15

  9. García-Pacheco R, Landaburu-Aguirre J, Lejarazu-Larrañaga A, Rodríguez-Sáez L, Molina S, Ransome T, García-Calvo E (2019) Free chlorine exposure dose (ppm·h) and its impact on RO membranes ageing and recycling potential. Desalination 457:133–143. https://doi.org/10.1016/j.desal.2019.01.030

    Article  CAS  Google Scholar 

  10. Martínez SM, Pacheco RG, Calvo ECP, et al (2015) Transformation of end-of-life RO membrane into recycled NF and UF membranes, surface characterization. In: IDA World Congress proceeding

  11. García-Pacheco R, Landaburu-Aguirre J, Molina S, Rodríguez-Sáez L, Teli SB, García-Calvo E (2015) Transformation of end-of-life RO membranes into NF and UF membranes: evaluation of membrane performance. J Membr Sci 495:305–315. https://doi.org/10.1016/j.memsci.2015.08.025

    Article  CAS  Google Scholar 

  12. Lawler W, Antony A, Cran M, Duke M, Leslie G, le-Clech P (2013) Production and characterisation of UF membranes by chemical conversion of used RO membranes. J Membr Sci 447:203–211. https://doi.org/10.1016/j.memsci.2013.07.015

    Article  CAS  Google Scholar 

  13. Pontié M, Dach H, Leparc J, Hafsi M, Lhassani A (2008) Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification. Desalination 221:174–191

    Article  Google Scholar 

  14. Ghasemi M, Shahgaldi S, Ismail M, Kim BH, Yaakob Z, Wan Daud WR (2011) Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int J Hydrog Energy 36:13746–13752. https://doi.org/10.1016/j.ijhydene.2011.07.118

    Article  CAS  Google Scholar 

  15. Ghasemi M, Daud WRW, Ismail AF et al (2013) Simultaneous wastewater treatment and electricity generation by microbial fuel cell: performance comparison and cost investigation of using Nafion 117 and SPEEK as separators. Desalination 325:1–6. https://doi.org/10.1016/J.DESAL.2013.06.013

    Article  CAS  Google Scholar 

  16. Luo Q, Zhang H, Chen J et al (2008) Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery. J Membr Sci 325:553–558. https://doi.org/10.1016/j.memsci.2008.08.025

    Article  CAS  Google Scholar 

  17. Chang YR, Lee YJ, Lee DJ (2019) Membrane fouling during water or wastewater treatments: current research updated. J Taiwan Inst Chem Eng 94:88–96. https://doi.org/10.1016/j.jtice.2017.12.019

    Article  CAS  Google Scholar 

  18. Chae KJ, Choi M, Ajayi FF et al (2007) Mass transport through a proton exchange membrane (Nafion) in microbial fuel cells. Energy Fuel 22:169–176

    Article  Google Scholar 

  19. Xu J, Sheng G-P, Luo H-W, Li WW, Wang LF, Yu HQ (2012) Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell. Water Res 46:1817–1824. https://doi.org/10.1016/j.watres.2011.12.060

    Article  CAS  PubMed  Google Scholar 

  20. Leong JX, Daud WRW, Ghasemi M, Liew KB, Ismail M (2013) Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew Sust Energ Rev 28:575–587. https://doi.org/10.1016/j.rser.2013.08.052

    Article  CAS  Google Scholar 

  21. Shabani M, Younesi H, Pontié M, Rahimpour A, Rahimnejad M, Zinatizadeh AA (2020) A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J Clean Prod 264:121446. https://doi.org/10.1016/j.jclepro.2020.121446

    Article  CAS  Google Scholar 

  22. Shabani M, Younesi H, Rahimpour A, Rahimnejad M (2019) Upgrading the electrochemical performance of graphene oxide-blended sulfonated polyetheretherketone composite polymer electrolyte membrane for microbial fuel cell application. Biocatal Agric Biotechnol 22:101369. https://doi.org/10.1016/j.bcab.2019.101369

    Article  Google Scholar 

  23. Angioni S, Millia L, Bruni G, Tealdi C, Mustarelli P, Quartarone E (2016) Improving the performances of NafionTM-based membranes for microbial fuel cells with silica-based, organically-functionalized mesostructured fillers. J Power Sources 334:120–127. https://doi.org/10.1016/j.jpowsour.2016.10.014

    Article  CAS  Google Scholar 

  24. Pontié M, Ben Rejeb S, Legrand J (2012) Anti-microbial approach onto cationic-exchange membranes. Sep Purif Technol 101:91–97. https://doi.org/10.1016/j.seppur.2012.09.022

    Article  CAS  Google Scholar 

  25. Sun C, Miao J, Yan J, Yang K, Mao C, Ju J, Shen J (2013) Applications of antibiofouling PEG-coating in electrochemical biosensors for determination of glucose in whole blood. Electrochim Acta 89:549–554. https://doi.org/10.1016/j.electacta.2012.11.005

    Article  CAS  Google Scholar 

  26. Roosjen A, Norde W, Van Der Mei HC, Busscher HJ (2006) The use of positively charged or low surface free energy coatings versus polymer brushes in controlling biofilm formation. Progr Colloid Polym Sci 132:138–144. https://doi.org/10.1007/2882_026

    Article  CAS  Google Scholar 

  27. Gottenbos B (2001) Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother 48:7–13. https://doi.org/10.1093/jac/48.1.7

    Article  CAS  PubMed  Google Scholar 

  28. Zhang M, Zhang K, De Gusseme B, Verstraete W (2012) Biogenic silver nanoparticles (bio-Ag 0) decrease biofouling of bio-Ag 0/PES nanocomposite membranes. Water Res 46:2077–2087. https://doi.org/10.1016/j.watres.2012.01.015

    Article  CAS  PubMed  Google Scholar 

  29. Madaeni SS, Zinadini S, Vatanpour V (2011) A new approach to improve antifouling property of PVDF membrane using in situ polymerization of PAA functionalized TiO2 nanoparticles. J Membr Sci 380:155–162. https://doi.org/10.1016/j.memsci.2011.07.006

    Article  CAS  Google Scholar 

  30. Bockris JO, Reddy AKN (1998) Volume 1: Modern Electrochemistry: Ionics. Springer Science & Business Media

  31. Sorenson TS (1999) Surface chemistry and electrochemistry of membranes. CRC Press

  32. Gaboriaud R, Lelièvre J, Lemordant D, Letellier P (1988) Thermodynamique appliquée à la chimie des solutions. Ellipses

  33. Lteif R, Dammak L, Larchet C, Auclair B (1999) Membrane electric conductivity: a study of the effect of the concentration and nature of the electrolyte and of the structure of the membrane. Eur Polym J 35:1187–1195

    Article  CAS  Google Scholar 

  34. Tourreuil V, Rossignol N, Bulvestre G, Larchet C, Auclair B (1998) Détermination de la séléctivité d’une membrane échangeuse d’ions: confrontation entre le flux de diffusion et le nombre de transport. Eur Polym J 34:1415–1421. https://doi.org/10.1016/S0014-3057(97)00288-7

    Article  CAS  Google Scholar 

  35. Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: investigation of static parameters, electrolyte permeability and tensile strength. Sep Purif Technol 80:270–275. https://doi.org/10.1016/j.seppur.2011.05.005

    Article  CAS  Google Scholar 

  36. Diasse-Sarr A, Essis-Tome H, Diawara CK, Quemeneur F, Firdaous L, Innocent C, Elana A, Kecili K, Pontie M (2004) New electrokinetics tools for studying ageing of ED and NF membrane processes in contact with highly salted solutions from seawater. Desalination 167:393–396. https://doi.org/10.1016/j.desal.2004.06.152

    Article  CAS  Google Scholar 

  37. Li Y (2009) Synthèse et propriétés de transport de membranes constituées d’alliages de polymères pour piles à combustible de type PEMFC, PhD thesis. University Caen/Normandie, France

  38. Rahman MM, Al-Sulaimi S, Farooque AM (2018) Characterization of new and fouled SWRO membranes by ATR/FTIR spectroscopy. Appl Water Sci 8: https://doi.org/10.1007/s13201-018-0806-7

  39. Mbokou SF, Pontié M, Razafimandimby B, Bouchara JP, Njanja E, Tonle Kenfack I (2016) Evaluation of the degradation of acetaminophen by the filamentous fungus Scedosporium dehoogii using carbon-based modified electrodes. Anal Bioanal Chem 408:5895–5903. https://doi.org/10.1007/s00216-016-9704-8

    Article  CAS  PubMed  Google Scholar 

  40. Pontié M, Jaspard E, Friant C, Kilani J, Fix-Tailler A, Innocent C, Chery D, Mbokou SF, Somrani A, Cagnon B, Pontalier PY (2019) A sustainable fungal microbial fuel cell (FMFC) for the bioremediation of acetaminophen (APAP) and its main by-product (PAP) and energy production from biomass. Biocatal Agric Biotechnol 22:101376. https://doi.org/10.1016/j.bcab.2019.101376

    Article  Google Scholar 

  41. Ernayati Kosimaningrum W (2018) Modification of carbon felt for construction of air-breathing cathode and its application in microbial fuel cell. University Montpellier/ Institut Teknologi Bandung, Indonésie

  42. Champavert J, Ben Rejeb S, Innocent C, Pontié M (2015) Microbial fuel cell based on Ni-tetra sulfonated phthalocyanine cathode and graphene modified bioanode. J Electroanal Chem 757:270–276. https://doi.org/10.1016/j.jelechem.2015.09.012

    Article  CAS  Google Scholar 

  43. Oh SE, Kim JR, Joo JH, Logan BE (2009) Effects of applied voltages and dissolved oxygen on sustained power generation by microbial fuel cells. Water Sci Technol 60:1311–1317. https://doi.org/10.2166/wst.2009.444

    Article  CAS  PubMed  Google Scholar 

  44. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology . Environ Sci Technol 40:5181–5192. https://doi.org/10.1021/es0605016

    Article  CAS  PubMed  Google Scholar 

  45. Mbokou SF, Tonle IK, Pontié M (2017) Development of a novel hybrid biofuel cell type APAP/O2 based on a fungal bioanode with a Scedosporium dehoogii biofilm. J Appl Electrochem 47:273–280. https://doi.org/10.1007/s10800-016-1030-5

    Article  CAS  Google Scholar 

  46. Vardner JT, Ling T, Russell ST, Perakis AM, He Y, Brady NW, Kumar SK, West AC (2017) Method of measuring salt transference numbers in ion-selective membranes. J Electrochem Soc 164:A2940–A2947. https://doi.org/10.1149/2.0321713jes

    Article  CAS  Google Scholar 

  47. Stenina I, Sistat P, Rebrov A, et al Ion mobility in Nafion-117 membranes. Elsevier

  48. Izquierdo-Gil MA, Barragán VM, Villaluenga JPG, Godino MP (2012) Water uptake and salt transport through Nafion cation-exchange membranes with different thicknesses. Chem Eng Sci 72:1–9. https://doi.org/10.1016/j.ces.2011.12.040

    Article  CAS  Google Scholar 

  49. Alam A, Vandamme D, Chun W et al (2016) Bioflocculation as an innovative harvesting strategy for microalgae. Rev Environ Sci Biotechnol 15:573–583

    Article  Google Scholar 

  50. Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104:4535–4585. https://doi.org/10.1021/cr0207123

    Article  CAS  PubMed  Google Scholar 

  51. Choi MJ, Chae KJ, Ajayi FF, Kim KY, Yu HW, Kim CW, Kim IS (2011) Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance. Bioresour Technol 102:298–303. https://doi.org/10.1016/j.biortech.2010.06.129

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Qin Z, Yang L, Guo H, Han S (2017) Activation promoted ionic liquid modification of reverse osmosis membrane towards enhanced permeability for desalination. J Taiwan Inst Chem Eng 80:25–33. https://doi.org/10.1016/j.jtice.2017.07.027

    Article  CAS  Google Scholar 

  53. Molina S, Landaburu-Aguirre J, Rodríguez-Sáez L, García-Pacheco R, de la Campa JG, García-Calvo E (2018) Effect of sodium hypochlorite exposure on polysulfone recycled UF membranes and their surface characterization. Polym Degrad Stab 150:46–56. https://doi.org/10.1016/j.polymdegradstab.2018.02.012

    Article  CAS  Google Scholar 

  54. Pontié M, Chasseray X, Lemordant D, Lainé JM (1997) The streaming potential method for the characterization of ultrafiltration organic membranes and the control of cleaning treatments. J Membr Sci 129:125–133. https://doi.org/10.1016/S0376-7388(96)00340-7

    Article  Google Scholar 

  55. Mulyati S, Takagi R, Fujii A, Ohmukai Y, Maruyama T, Matsuyama H (2012) Improvement of the antifouling potential of an anion exchange membrane by surface modification with a polyelectrolyte for an electrodialysis process. J Membr Sci 417–418:137–143. https://doi.org/10.1016/j.memsci.2012.06.024

    Article  CAS  Google Scholar 

  56. Krasemann L, Tieke B (2000) Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes. Langmuir 16:287–290. https://doi.org/10.1021/la991240z

    Article  CAS  Google Scholar 

  57. Larchet C, Dammak L, Auclair B et al (2004) A simplified procedure for ion-exchange membrane characterisation. New J Chem 28:1260–1267. https://doi.org/10.1039/b316725a

    Article  CAS  Google Scholar 

  58. Moradi MR, Pihlajamäki A, Hesampour M, Ahlgren J, Mänttäri M (2019) End-of-life RO membranes recycling: reuse as NF membranes by polyelectrolyte layer-by-layer deposition. J Membr Sci 584:300–308. https://doi.org/10.1016/j.memsci.2019.04.060

    Article  CAS  Google Scholar 

  59. Shabani M, Pontié M, Younesi H, Nacef M, Rahimpour A, Rahimnejad M, Bouchenak Khelladi RM (2021) Biodegradation of acetaminophen and its main by-product 4-aminophenol by Trichoderma harzianum versus mixed biofilm of Trichoderma harzianum/Pseudomonas fluorescens in a fungal microbial fuel cell. J Appl Electrochem 1:3. https://doi.org/10.1007/s10800-020-01518-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the microscopy department of Angers University (SCIAM, France) with a special thanks to Romain Mallet. Lots of thanks to Nadege BLON for the FTIR spectra result from the Chemical Engineering Department of Angers University, Faculty of Sciences. We would also like to appreciate the Campus France, Paris (France), and the French Embassy in Tehran (Iran) for providing the scholarship of Ph.D. student Mehri Shabani.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mehri Shabani or Maxime Pontié.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Somrani, A., Shabani, M., Mohamed, Z. et al. Transforming an end-of-life reverse osmosis membrane in a cationic exchange membrane and its application in a fungal microbial fuel cell. Ionics 27, 3169–3184 (2021). https://doi.org/10.1007/s11581-021-04070-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04070-5

Keywords

Navigation