Skip to main content

Advertisement

Log in

Effect of soft template on nickel-cobalt layered double hydroxides grown on nickel foam as battery-type electrodes for hybrid supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Nickel-cobalt layered double hydroxides (NiCo-LDHs) are successfully synthesized on nickel foam by the simple hydrothermal process, with polyvinylpyrrolidone (PVP), cetyltrimethyl ammonium bromide (CTAB), polyvinyl alcohol (PVA), and sodium dodecyl sulfate (SDS) as template agents, respectively. The prepared NiCo-LDHs present different morphology and outstanding electrochemical performances. Particularly, the NiCo-LDHs samples with CTAB as template agents (NC-C) exhibit high specific capacity (869.48 C g−1 at 1 A g−1) and excellent durability (88.23% capacity retention after 2000 cycles). Furthermore, the hybrid supercapacitors (HSCs) device based on NC-C and activated carbon electrodes deliver an energy density of 48.34 Wh kg−1 at a power density of 799.84 W kg−1 and satisfactory cycle stability (90.83% capacity retention after 2000 cycles). These properties indicate that the prepared materials could become ideal electrode materials for asymmetric supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gao X, Zhao Y, Dai K, Wang J, Zhang B, Shen X (2020) NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J 384:123373. https://doi.org/10.1016/j.cej.2019.123373

    Article  CAS  Google Scholar 

  2. Li G, Zhang X, Qiu D, Liu Z, Yang C, Cockreham CB, Wang B, Fu L, Zhang J, Sudduth B, Guo X, Sun H, Huang Z, Qi J, Sun J, Ha S, Wang Y, Wu D (2019) Tuning Ni/Al ratio to enhance pseudocapacitive charge storage properties of nickel–aluminum layered double hydroxide. Adv Electron Mater 5(8):1900215. https://doi.org/10.1002/aelm.201900215

    Article  CAS  Google Scholar 

  3. Gao Z, Wang J, Li Z, Yang W, Wang B, Hou M, He Y, Liu Q, Mann T, Yang P, Zhang M, Liu L (2011) Graphene nanosheet/Ni2+/Al3+layered double-hydroxide composite as a novel electrode for a supercapacitor. Chem Mater 23(15):3509–3516. https://doi.org/10.1021/cm200975x

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Kim J, Zhang J (2012) Nickel and cobalt oxide composite as a possible electrode material for electrochemical supercapacitors. J Power Sources 217(NOV.1):554–561. https://doi.org/10.1016/j.jpowsour.2011.10.031

    Article  CAS  Google Scholar 

  5. Xu J, Li X, Li X, Li S, Zhao L, Wang D, Xing W, Yan Z (2019) Free-standing cotton-derived carbon microfiber@nickel-aluminum layered double hydroxides composite and its excellent capacitive performance. J Alloys Compd 787:27–35. https://doi.org/10.1016/j.jallcom.2019.01.270

    Article  CAS  Google Scholar 

  6. Wang X, Li H, Li H, Lin S, Bai J, Dai J, Liang C, Zhu X, Sun Y, Dou S (2019) Heterostructures of Ni–Co–Al layered double hydroxide assembled on V4C3MXene for high-energy hybrid supercapacitors. J Mater Chem A 7(5):2291–2300. https://doi.org/10.1039/c8ta11249e

    Article  CAS  Google Scholar 

  7. Qi J, Yan YT, Cai YF, Cao J (2021) Feng JC Nanoarchitectured design of vertical-standing arrays for supercapacitors: progress, challenges, and perspectives. Adv Funct Mater 31:2006030. https://doi.org/10.1002/adfm.202006030

    Article  CAS  Google Scholar 

  8. Sun S, Huang M, Wang P, Lu M (2019) Controllable hydrothermal synthesis of Ni/Co MOF as hybrid advanced electrode materials for supercapacitor. J Electrochem Soc 166(10):A1799–A1805. https://doi.org/10.1149/2.0291910jes

    Article  CAS  Google Scholar 

  9. Cao J, Li J, Li L, Zhang Y, Cai D, Chen D, Han W (2019) Mn-Doped Ni/Co LDH nanosheets grown on the natural N-dispersed PANI-derived porous carbon template for a flexible asymmetric supercapacitor. ACS Sustain Chem Eng 7(12):10699–10707. https://doi.org/10.1021/acssuschemeng.9b01343

    Article  CAS  Google Scholar 

  10. Qin Q, Ou D, Ye C, Chen L, Lan B, Yan J, Wu Y (2019) Systematic study on hybrid supercapacitor of Ni-Co layered double hydroxide//activated carbons. Electrochim Acta 305:403–415. https://doi.org/10.1016/j.electacta.2019.03.082

    Article  CAS  Google Scholar 

  11. Chen H, Cai F, Kang Y, Zeng S, Chen M, Li Q (2014) Facile assembly of Ni–Co hydroxide nanoflakes on carbon nanotube network with highly electrochemical capacitive performance. ACS Appl Mater Interfaces 6(22):19630–19637. https://doi.org/10.1021/am5041576

    Article  CAS  PubMed  Google Scholar 

  12. Cao J, Mei Q, Wu R, Wang W (2019) Flower-like nickel–cobalt layered hydroxide nanostructures for super long-life asymmetrical supercapacitors. Electrochim Acta 321:134711. https://doi.org/10.1016/j.electacta.2019.134711

    Article  CAS  Google Scholar 

  13. Malak-Polaczyk A, Vix-Guterl C, Frackowiak E (2010) Carbon/layered double hydroxide (LDH) composites for supercapacitor application. Energy Fuel 24(6):3346–3351. https://doi.org/10.1021/ef901505c

    Article  CAS  Google Scholar 

  14. Hong W-L, Lin L-Y (2019) Influence of structure directing agents on synthesizing battery-type materials for flexible battery supercapacitor hybrids. J Taiwan Inst Chem Eng 100:105–116. https://doi.org/10.1016/j.jtice.2019.04.010

    Article  CAS  Google Scholar 

  15. Zhou X, Qu X, Zhao W, Ren Y, Lu Y, Wang Q, Yang D, Wang W, Dong X (2020) A facile synthesis of porous bimetallic Co–Ni fluorides for high-performance asymmetric supercapacitors. Nanoscale. https://doi.org/10.1039/d0nr01562h

  16. Zhang W, Xin W, Hu T, Gong Q, Gao T, Zhou G (2019) One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials. Ceram Int 45(7):8406–8413. https://doi.org/10.1016/j.ceramint.2019.01.149

    Article  CAS  Google Scholar 

  17. Chen H, Hu L, Chen M, Yan Y, Wu L (2014) Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv Funct Mater 24(7):934–942. https://doi.org/10.1002/adfm.201301747

    Article  CAS  Google Scholar 

  18. Kong LB, Lu C (2013) Effect of surfactant on the morphology and capacitive performance of porous NiCo2O4. J Solid State Electrochem 17(5):1463–1471. https://doi.org/10.1007/s10008-013-2016-4

    Article  CAS  Google Scholar 

  19. Wang H, Lu J, Yao S, Zhang W (2018) Sodium dodecyl sulfate-assisted synthesis of flower-like NiCo2O4 microspheres with large specific surface area for supercapacitors. J Alloys Compd 744:187–195. https://doi.org/10.1016/j.jallcom.2018.01.200

    Article  CAS  Google Scholar 

  20. Jabeen M, Ishaq M, Song W, Xu L, Deng Q (2017) Synthesis of Ni/Co/Al-layered triple hydroxide@brominated graphene hybrid on nickel foam as electrode material for high-performance supercapacitors. RSC Adv 7(74):46553–46565. https://doi.org/10.1039/C7RA08744F

    Article  CAS  Google Scholar 

  21. Kang L, Huang C, Zhang J, Zhang M, Wu X (2020) Effect of fluorine doping and sulfur vacancies of CuCo2S4 on its electrochemical performance in supercapacitors. Chem Eng J 390:124643. https://doi.org/10.1016/j.cej.2020.124643

    Article  CAS  Google Scholar 

  22. Tyagi A, Joshi MC, Shah A, Thakur VK, Gupta RK (2019) Hydrothermally tailored three-dimensional Ni–V layered double hydroxide nanosheets as high-performance hybrid supercapacitor applications. ACS Omega 4(2):3257–3267. https://doi.org/10.1021/acsomega.8b03618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peng H, Jing C, Chen J, Jiang D, Liu X, Dong B, Dong F, Li S, Zhang Y (2019) Crystal structure of nickel manganese-layered double hydroxide@cobaltosic oxides on nickel foam towards high-performance supercapacitors. CrystEngComm 21(3):470–477. https://doi.org/10.1039/c8ce01861h

    Article  CAS  Google Scholar 

  24. Dai X, Dai Y, Lu J, Pu L, Wang W, Jin J, Ma F, Tie N (2019) Cobalt oxide nanocomposites modified by NiCo-layered double hydroxide nanosheets as advanced electrodes for supercapacitors. Ionics 26(5):2501–2511. https://doi.org/10.1007/s11581-019-03333-6

    Article  CAS  Google Scholar 

  25. Lei X, Shi Z, Wang X, Wang T, Ai J, Shi P, Xue R, Guo H, Yang W (2018) Solvothermal synthesis of pompon-like nickel-cobalt hydroxide/graphene oxide composite for high-performance supercapacitor application. Colloids Surf A Physicochem Eng Asp 549:76–85. https://doi.org/10.1016/j.colsurfa.2018.04.011

    Article  CAS  Google Scholar 

  26. Kibona TE (2020) Synthesis of NiCo2O4/mesoporous carbon composites for supercapacitor electrodes. J Solid State Electrochem 42:1587–1598. https://doi.org/10.1007/s10008-020-04673-4

    Article  CAS  Google Scholar 

  27. Sivashanmugam G, Anbusrinivasan P (2019) CTAB-templated synthesis and characterization of nanorod-shaped NiCo2O4 crystals for supercapacitor application. Chem Pap. https://doi.org/10.1007/s11696-019-00983-8

  28. Kang L, Zhang M, Zhang J, Liu S, Jun SC (2020) Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors. J Mater Chem A 8(45):24053–24064. https://doi.org/10.1039/D0TA08979F

    Article  CAS  Google Scholar 

  29. Sl A, Ling KB, Jian ZB, Ej A, Sl A, Scj A (2020) Structural engineering and surface modification of MOF-derived cobalt-based hybrid nanosheets for flexible solid-state supercapacitors - ScienceDirect. Energy Storage Mater 32:167–177. https://doi.org/10.1016/j.ensm.2020.07.017

    Article  Google Scholar 

  30. Zhou M, Xu F, Zhang S, Liu B, Qi J (2020) Low consumption design of hollow NiCo-LDH nanoflakes derived from MOFs for high-capacity electrode materials. J Mater Sci Mater Electron 31(21):3281–3288. https://doi.org/10.1007/s10854-020-02876-z

    Article  CAS  Google Scholar 

  31. Zhao Y, Zhang X, He J, Zhang L, Xia M, Gao F (2015) Morphology controlled synthesis of nickel cobalt oxide for supercapacitor application with enhanced cycling stability. Electrochim Acta 174:51–56. https://doi.org/10.1016/j.electacta.2015.05.162

    Article  CAS  Google Scholar 

  32. Qin B, Jia H, Cai Y, Li M (2021) Feng J (2020) Antimony nanocrystals self-encapsulated within bio-oil derived carbon for ultra-stable sodium storage. J Colloid Interface Sci 582:459–466. https://doi.org/10.1016/j.jcis.2020.08.050

    Article  CAS  PubMed  Google Scholar 

  33. Yan Y, Bao K, Liu T, Cao J, Feng J, Qi J (2020) Minutes periodic wet chemistry engineering to turn bulk Co-Ni foam into hydroxide based nanosheets for efficient water decomposition. Chem Eng J 401:126092. https://doi.org/10.1016/j.cej.2020.126092

    Article  CAS  Google Scholar 

  34. Xing H, Lan Y, Zong Y, Sun Y, Zhu X, Li X, Zheng X (2019) Ultrathin NiCo-layered double hydroxide nanosheets arrays vertically grown on Ni foam as binder-free high-performance supercapacitors. Inorg Chem Commun 101:125–129. https://doi.org/10.1016/j.inoche.2019.01.031

    Article  CAS  Google Scholar 

  35. Ma KY, Liu F, Zhang MB, Zhang XB, Cheng JP (2017) Core/shell microrod arrays of NiO/Co-Fe layered double hydroxides deposited on nickel foam for energy storage and conversion. Electrochim Acta 225:425–434. https://doi.org/10.1016/j.electacta.2016.12.163

    Article  CAS  Google Scholar 

  36. Nam HW, Gopi CVVM, Sambasivam S, Vinodh R, Raghavendra KVG, Kim H-J, Obaidat IM, Kim S (2020) Binder-free honeycomb-like FeMoO4 nanosheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. J Energy Storage 27:101055. https://doi.org/10.1016/j.est.2019.101055

    Article  Google Scholar 

  37. Zhou Q, Fan T, Li Y, Chen D, Liu S, Li X (2019) Hollow–structure NiCo hydroxide/carbon nanotube composite for high–performance supercapacitors. J Power Sources 426:111–115. https://doi.org/10.1016/j.jpowsour.2019.04.035

    Article  CAS  Google Scholar 

  38. Zhang M, Song Y, Zhao X, Guo Y, Yang L, Xu S (2019) Nanoneedle-decorated NiCo-layered double hydroxide microspheres tuned as high-efficiency electrodes for pseudocapacitors. CrystEngComm 21(45):6985–6990. https://doi.org/10.1039/C9CE01252D

    Article  CAS  Google Scholar 

  39. Zhang L, Cai P, Wei Z, Liu T, Yu J, Al-Ghamdi AA, Wageh S (2020) Synthesis of reduced graphene oxide supported nickel-cobalt-layered double hydroxide nanosheets for supercapacitors. J Colloid Interface Sci 588:637–645. https://doi.org/10.1016/j.jcis.2020.11.056

    Article  CAS  PubMed  Google Scholar 

  40. Feng Y, Li Y, Yang W, Huang H (2020) Facile synthesis of nickel cobalt layered double hydroxide nanosheets intercalated with sulfate anion for high-performance supercapacitor. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2020.16983

  41. Wang J, Zhong Q, Zeng Y, Cheng D, Xiong Y, Bu Y (2019) Rational construction of triangle-like nickel-cobalt bimetallic metal-organic framework nanosheets arrays as battery-type electrodes for hybrid supercapacitors. J Colloid Interface Sci 555:42–52. https://doi.org/10.1016/j.jcis.2019.07.063

    Article  CAS  PubMed  Google Scholar 

  42. Patil B, Park C, Ahn H (2019) Scalable nanohybrids of graphitic carbon nitride and layered NiCo hydroxide for high supercapacitive performance. RSC Adv 9(58):33643–33652. https://doi.org/10.1039/C9RA06068E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the reviewers for their contribution in ensuring the quality of the article. We thank the financial support from the Youth Foundation of Natural Science Foundation of Hebei Province (No. C2020202009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Enshan Han or Yanzhen He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Han, E., He, Y. et al. Effect of soft template on nickel-cobalt layered double hydroxides grown on nickel foam as battery-type electrodes for hybrid supercapacitors. Ionics 27, 3129–3141 (2021). https://doi.org/10.1007/s11581-021-04050-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04050-9

Keywords

Navigation