Skip to main content

Advertisement

Log in

A novel redox capacitor with a natural rubber-based solid polymer electrolyte for energy applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of high-performance power sources such as super capacitors (EDLCs and redox capacitors) has become an urgent requirement in recent years due to the unprecedented growth of portable technology. The present study was carried out to fabricate a redox capacitor using a natural rubber-based solid polymer electrolyte (SPE). Zinc trifluoromethanesulfonate (ZnTf), propylene carbonate (PC), and pyrrole were used as electrode materials whereas ZnTf and methyl-grafted natural rubber (MGNR) were used to prepare the SPE. Warburg type diffusion as well as capacitive behavior was observed from the EIS test. Single electrode specific capacitance (Csc) from cyclic voltammetry (CV) was 27.5 Fg−1 at the scan rate of 10 mVs−1. Retention of the Csc value was 92% over 500 cycles. Single electrode specific discharge capacitance (Csd) found from galvanostatic charge discharge test was 6 Fg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19(2):109–123. https://doi.org/10.1016/j.mattod.2015

    Article  CAS  Google Scholar 

  2. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264. https://doi.org/10.1016/j.mattod.2014

    Article  CAS  Google Scholar 

  3. Arcila-Velez MR, Roberts ME (2014) Redox solute doped polypyrrole for high-charge capacity polymer electrodes. Chem Mater 26(4):1601–1607. https://doi.org/10.1021/cm403630h

    Article  CAS  Google Scholar 

  4. Choi NS, Chen Z, Freunberger SA, Ji X, Sun YK, Amine K, Yushin G, Nazar LF, Cho J, Bruce PG (2012) Challenges facing lithium batteries and electrical double-layer capacitors. Angew Chem Int Ed 51(40):9994–10024. https://doi.org/10.1002/anie.201201429

    Article  CAS  Google Scholar 

  5. Lv Q, Wang S, Sun H, Luo J, Xiao J, Xiao J, Xiao F, Wang S (2015) Solid state thin-film supercapacitors with ultrafast charge/discharge based on N-doped-carbon-tubes/Au-nanoparticles-doped-MnO2 nanocomposites. Nano Lett 16(1):40–47. https://doi.org/10.1021/acs.nanolett.5b02489]

    Article  PubMed  Google Scholar 

  6. Li-Zhen F, Maier J (2006) High-performance polypyrrole electrode materials for redox supercapacitors. Electrochem Commun 8(6):937–940

    Article  Google Scholar 

  7. Ixra MDLFS, Sudhakar YN, Selvakumar M (2014) High performance of symmetrical supercapacitor based on multilayer films of graphine oxide/polypyrrole electrodes. Appl Surf Sci 296:195–203

    Article  Google Scholar 

  8. Fic K, Platek A, Piwek J, Frackowiak E (2018) Sustainable materials for electrochemical capacitors. Mater Today 21(4):437–454. https://doi.org/10.1016/j.mattod.2018.03.005

    Article  CAS  Google Scholar 

  9. Rahman MYA, Ahmad A, Lee TK, Farina Y, Dhlan HM (2011) Effect of ethylene carbonate (EC) plasticizer on poly (vinyl chloride)- liquid 50% epoxidised natural rubber (LENR50) based polymer electrolyte. Mater Sci Appl 2(7):818–826

    CAS  Google Scholar 

  10. Glasse MD, Idris R, Latham RJ, Linford RG, Schlindwein WS (2000) Polymer electrolytes based on modified natural rubber. Solid State Ionics 147(3-4):385–393

    Article  Google Scholar 

  11. Khoon LT, Zaini NFM, Mobarak NN, Hassan NH, Noor SAM, Mamat S, Ahmad A (2019) PEO based polymer electrolyte comprised of epoxidized natural rubber material (ENR50) for Li-Ion polymer battery application. Electrochim Acta 316:283–291. https://doi.org/10.1016/j.electacta.2019.05.143

    Article  CAS  Google Scholar 

  12. Khoon LT, Ataollahi N, Hassan NH, Ahmad A (2015) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20(1):203–213. https://doi.org/10.1007/s10008-015-3017-2

    Article  CAS  Google Scholar 

  13. Yusoff SNHM, Sim LH, Chan CH, Aziz SSSA, Mahmud ZS, Hairi HM (2015) Studies on thermal and conductivity of modified natural rubber. J Ad Res Mat Sci 12(1):1–11

    Google Scholar 

  14. Schwake A, Geuking H, Cammann K (1998) Application of a new graphical fitting approach for data analysis in electrochemical impedance spectroscopy. Electroanalysis 10(15):1026–1029

    Article  CAS  Google Scholar 

  15. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly ( vinylidene fl uoride-co-hexa fl uoropropylene ) based gel electrolyte nanocomposite for sodium–sulfur batteries. Solid State Ionics 202:45–53. https://doi.org/10.1016/j.ssi.2011.09.001

    Article  CAS  Google Scholar 

  16. Bard AJ, Faulkner LR, Swain E, Robey C (2001) Fundamentals and Applications. Electrochem Methods 2(482):580–632

    Google Scholar 

  17. Jain A, Tripathi SK (2013) Experimental studies on high-performance supercapacitor based on nanogel polymer electrolyte with treated activated charcoal. Ionics 19(3):549–557. https://doi.org/10.1007/s11581-012-0782-0

    Article  CAS  Google Scholar 

  18. Lufrano F, Staiti P, Minutoli M (2003) Evaluation of Nafion based double layer capacitors by electrochemical impedance spectroscopy. J Power Sources 124:314–320

    Article  CAS  Google Scholar 

  19. Prabaharan SRS, Vimala R, Zainal Z (2006) Nanostructured mesoporous carbon as electrodes for supercapacitors. J Power Sources 161(1):730–736. https://doi.org/10.1016/j.jpowsour.2006.03.074

    Article  CAS  Google Scholar 

  20. Tey JP, Careem MA, Yarmo MA, Arof AK (2016) Durian shell-based activated carbon electrode for EDLCs. Ionics 22(7):1209–1216

    Article  CAS  Google Scholar 

  21. Hao F, Han F, Liang Y, Wang C, Yao Y (2018) Architectural design and fabrication approaches for solid-state batteries. MRS Bull 43(10):746–751. https://doi.org/10.1557/mrs.2018.211)

    Article  Google Scholar 

  22. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77(2):183–197

    Article  CAS  Google Scholar 

  23. Bandaranayake M, Weerasinghe S, Perera K, Vidanapathirana K (2017) Fabrication and evaluation of an all solid redox capacitor with an iodine based gel polymer electrolyte. J Natl Sci Found Sri Lanka 45(4):355–360. https://doi.org/10.4038/jnsfsr.v45i4.8229

    Article  CAS  Google Scholar 

  24. Ramya R, Sivasubramanian R, Sangaranarayanan MV (2013) Conducting Polymers based electrochemical supercapacitors - progress and prospects. Electrochim Acta 101:109–129

    Article  CAS  Google Scholar 

  25. Yu H, Wu J, Fan L, Lin Y, Xu K, Tang Z, Cheng C, Tang S, Lin J, Huang M, Lan Z (2012) A novel redox-mediated gel polymer electrolyte for high-performance super capacitor. J Power Sources 198:402–407. https://doi.org/10.1016/j.jpowsour.2011.09.110

    Article  CAS  Google Scholar 

  26. Wang W, Guo S, Penchev M, Ruiz I, Bozhilov KN, Yan D, Ozkan M, Ozkan CS (2013) Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity super capacitors. Nano Energy 2:294–303. https://doi.org/10.1016/j.nanoen.2012.10.001

    Article  CAS  Google Scholar 

  27. Tripathi SK, Jain A, Gupta A, Kumari M (2013) Studies on redox supercapacitor using electrochemically synthesized polypyrrole as electrode material using blend polymer gel electrolyte. Indian J Pure Appl Phys 51:315–319

    CAS  Google Scholar 

  28. Inzelt G (2017) Synthesis; redox behaviour; composites; sensors; biosensors; supercapacitors; Eelectrocatalysis. J Electrochem Sci Eng 8(1):3–37. https://doi.org/10.5599/jese.448

    Article  CAS  Google Scholar 

  29. Bandaranayake CM, Yayathilake YMCD, Perera KS, Vidanapathirana KP, Bandara LRAK (2016) Investigation of a gel polymer electrolyte based on polyacrylonitrile and magnesium chloride for a redox capacitor. Ceylon J Sci 45(1):75. https://doi.org/10.4038/cjs.v45i1.7366

    Article  Google Scholar 

  30. Harankahawa N, Weerasinghe S, Vidanapathirana K, Perera K (2017) Investigation of a pseudo capacitor with polyacrylonitrile based gel polymer electrolyte. J Electrochem Sci Technol 8(2):107–114. https://doi.org/10.5229/JECST.2017.8.2.107

    Article  CAS  Google Scholar 

  31. Palaniappan S, Sydulu SB, Prasanna TL, Srinivas P (2010) High-temperature oxidation of aniline to highly ordered polyaniline – sulfate salt with a nanofiber morphology and its use as electrode materials in symmetric supercapacitors. J Appl Polym Sci 120(2):780–788. https://doi.org/10.1002/app

    Article  Google Scholar 

  32. Hashmi SA, Latham RJ, Linford RG, Schlindwein WS (1998) Conducting polymer based electrochemical redox super capacitors using proton and lithium ion conducting polymer electrolytes. Polym Int 47:28–33

    Article  CAS  Google Scholar 

  33. Lei C, Markoulidis F, Ashitaka Z, Lekakou C (2013) Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim Acta 92:183–187. https://doi.org/10.1016/j.electacta.2012.12.092

    Article  CAS  Google Scholar 

  34. Amarsa SN, Kufian MZ, Majid SR, Arof AK (2011) Preparation and characterization of magnesium ion gel polymer electrolytes for application in electrical double layer capacitors. Electrochim Acta 57:91–97

    Article  Google Scholar 

  35. Manjakkal L, Navaraj WT, Núñez CG, Dahiya R (2019) Graphene-graphite polyurethane composite based high-energy density flexible supercapacitors. Adv Sci 1802251:1–13. https://doi.org/10.1002/advs.201802251

    Article  CAS  Google Scholar 

  36. Pandey GP, Rastogi AC (2012) Solid-state supercapacitors based on pulse polymerized poly(3,4-ethylenedioxythiophene) electrodes and ionic liquid gel polymer electrolyte. J Electrochem Soc 159(10):A1664–A1671

    Article  CAS  Google Scholar 

  37. Prasadini KW, Perera KS, Vidanapathirana KP (2018) 1-Ethyl-3-methylimidazolium trifluoromethanesulfonate-based gel polymer electrolyte for application in electrochemical double-layer capacitors. Ionics 25(6):2805–2811. https://doi.org/10.1007/s11581-018-2810-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Associated Speciality Rubbers (PVT) Ltd, Kegalle, Sri Lanka is highly acknowledged for providing natural rubber samples.

Funding

This study is funded by National Research Council, Sri Lanka under the research grant NRC 17-006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Perera.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

• A redox capacitor was fabricated successfully for the first time using a natural rubber based electrolyte.

• Capacitive behavior was evidenced with EIS results.

• A Csc value of 27.5 Fg-1 was available at the scan rate of 10 mVs-1 and within the potential window -1.7 V to 1.7 V.

• Stability of the device was satisfactory with a retention of Csc around 92%.

• Initial Csd value was 6 Fg-1 under the current 3 ×10-5 μA and within the potential window, 0.1 V - 1.7 V.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajapaksha, H.G.N., Perera, K.S. & Vidanapathirana, K.P. A novel redox capacitor with a natural rubber-based solid polymer electrolyte for energy applications. Ionics 27, 2231–2239 (2021). https://doi.org/10.1007/s11581-021-03970-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03970-w

Keywords

Navigation