Skip to main content
Log in

On the improvement of the electrochemical behaviour of lithium-substituted polypyrrole for applications in Li-ion cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Present study deals with the efforts undertaken to improve the electrochemical performance of lithium-substituted polypyrrole (PPy) as the cathode active material in Li-ion-based cells. Improvement in the electrochemical performance is achieved by synthesizing polypyrrole by chemical oxidative polymerization strategy using ammonium persulfate (APS) as the oxidant. Polypyrrole synthesized using the modified approach is subjected to lithiation by treating with n-butyllithium in hexanes (n-BuLi). Lithium-enriched PPy is used as the cathode active material to assemble Li-ion cells, and the assembled cells are subjected to detailed electrochemical characterization. The cells are found to show significant improvement in the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gao X, Luo W, Zhong C, Wexler D et al (2014) Novel germanium/polypyrrole composite for high power lithium-ion batteries. Sci Rep 4:1–8. https://doi.org/10.1038/srep06095

    Article  CAS  Google Scholar 

  2. Du X, Yang T, Lin J et al (2016) Microwave-assisted synthesis of SnO 2 @ polypyrrole nanotubes and their pyrolyzed composite as anode for lithium-ion batteries. ACS Appl Mater Interfaces 8(24):15598–15606. https://doi.org/10.1021/acsami.6b03332

    Article  PubMed  CAS  Google Scholar 

  3. Scrosati B, Hassoun J, Sun Y-K (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295. https://doi.org/10.1039/c1ee01388b

    Article  CAS  Google Scholar 

  4. Puthirath AB, John B, Gouri C, Jayalekshmi S (2015) Lithium doped polyaniline and its composites with LiFePO4 and LiMn2O4-prospective cathode active materials for environment friendly and flexible Li ion battery applications. RSC Adv 5(85):69220–69228. https://doi.org/10.1039/C5RA10706G

    Article  CAS  Google Scholar 

  5. Gerard M, Chaubey A, Malhotra BD (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359. https://doi.org/10.1016/S0956-5663(01)00312-8

    Article  PubMed  CAS  Google Scholar 

  6. Suhada N, Tahiruddin M, Daik R, Selangor B (2015) Synthesis and characterization of anionic surfactants doped polypyrrole. Der Pharma Chemica 7(6):159–162

    Google Scholar 

  7. Kassim A, Basar ZB, Mahmud HNME (2002) Effects of preparation temperature on the conductivity of polypyrrole conducting polymer. J Chem Sci 114(2):155–162. https://doi.org/10.1007/BF02704308

    Article  CAS  Google Scholar 

  8. Yuan L, Wang J, Chew SY, Chen J, Guo ZP, Zhao L, Konstantinov K, Liu HK (2007) Synthesis and characterization of SnO2 – polypyrrole composite for lithium-ion battery. 174(2):1183–1187. https://doi.org/10.1016/j.jpowsour.2007.06.179

  9. Gao X, Deng Y, Wexler D et al (2014) Improving the electrochemical performance of the LiNi0.5Mn1.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J Mater Chem A Mater Energy Sustain 3:404–411. https://doi.org/10.1039/C4TA04018J

    Article  CAS  Google Scholar 

  10. Basavaraja C, Kim WJ, Kim DG, Huh DS (2011) Synthesis and characterization of soluble polypyrrole–poly(ɛ-caprolactone) polymer blends with improved electrical conductivities. Mater Chem Phys 129:787–793. https://doi.org/10.1016/j.matchemphys.2011.05.057

    Article  CAS  Google Scholar 

  11. Xin P, Jin B, Li H, Lang X, Yang C, Gao W, Zhu Y, Zhang W, Dou S, Jiang Q (2017) Facile synthesis of sulfur–polypyrrole as cathodes for lithium–sulfur batteries. ChemElectroChem 4:115–121

    Article  CAS  Google Scholar 

  12. Ramasamy RP, Veeraraghavan B, Haran B, Popov BN (2003) Electrochemical characterization of a polypyrrole/Co0.2 CrO x composite as a cathode material for lithium ion batteries. J Power Sour 124(1):197–203. https://doi.org/10.1016/S0378-7753(03)00738-9

    Article  CAS  Google Scholar 

  13. Liu X, Li Y, Zhao Y et al (2016) In situ polymerization synthesis of ternary sulfur/polypyrrole/graphene nanosheet cathode for lithium / sulfur batteries. Materials Science Forum 847:9752. https://doi.org/10.4028/www.scientific.net/MSF.847.8

    Article  Google Scholar 

  14. Wang W, Li G, Wang Q, Li GR, Ye SH, Gao XP (2013) Sulfur-polypyrrole/graphene multi-composites as cathode for lithium-sulfur battery. J Electrochem Soc 160(6):805–810. https://doi.org/10.1149/2.059306jes

    Article  CAS  Google Scholar 

  15. Su C, Wang L, Xu L, Zhang C (2013) Synthesis of a novel ferrocene-contained polypyrrole derivative and its performance as a cathode material for Li-ion batteries. Electrochim Acta 104:302–307. https://doi.org/10.1016/j.electacta.2013.04.127

    Article  CAS  Google Scholar 

  16. John J, Manoj M, Anilkumar KM, Pradeep VS, Jayalekshmi S (2018) Lithium-enriched polypyrrole as a prospective cathode material for Li-ion cells. Ionics 24:2565–2574

    Article  CAS  Google Scholar 

  17. Arunsawad S, Srikulkit K, Limpanart S (2014) Effect of surfactant on conductivity of poly (pyrrole- co -formyl pyrrole) via emulsion polymerization. J Metals 24(2):29–34

    CAS  Google Scholar 

  18. Su N, Yuan SJ (2012) Synthesis and characterization of polypyrrole doped with anionic spherical polyelectrolyte brushes. Express Polym Lett 6(9):697–705. https://doi.org/10.3144/expresspolymlett.2012.75

    Article  CAS  Google Scholar 

  19. Jeeju PP, Varma SJ, Jayalekshmi S (2012) Novel polypyrrole films with excellent crystallinity and good thermal stability. Mater Chem Phys 134(2-3):803–808

    Article  CAS  Google Scholar 

  20. Mane AT, Sartale SD, Patil VB (2015) Dodecyl benzene sulfonic acid (DBSA) doped polypyrrole (PPy) films : synthesis, structural, morphological, gas sensing and impedance study. J Mater Sci Mater Electron 26:8497–8506

    Article  CAS  Google Scholar 

  21. Dall’Antonia LH, Vidotti M, Córdoba de Torresi SI, Torresi RM (2002) A new sensor for ammonia determination based on polypyrrole films doped with dodecylbenzenesulfonate (DBSA) Ions. Electroanalysis 14(22):1577–1586

    Article  Google Scholar 

  22. Ramesan MT (2012) Synthesis, characterization, and conductivity studies of polypyrrole/copper sulfide nanocomposites. J Appl Polym Sci 128(3):1–7. https://doi.org/10.1002/app.38304

    Article  CAS  Google Scholar 

  23. Fujii S, Armes SP, Jeans R, Devonshire R, Warren S, McArthur SL, Burchell MJ, Postberg F, Srama R (2006) Synthesis and characterization of polypyrrole-coated sulfur-rich latex particles. Chem Mater 18(11):2758–2765

    Article  CAS  Google Scholar 

  24. Ghalib H, Abdullah I and Daik R (2013) Electrical conductivity of anionic surfactant-doped polypyrrole nanoparticles prepared via emulsion polymerization. 21:459–471

  25. Chitte HK, Bhat NV, Walunj VE (2011) Synthesis of polypyrrole using ferric chloride (FeCl3) as oxidant together with some dopants for use in gas sensors. J Sensor Technol 1:47–56

    Article  CAS  Google Scholar 

  26. Trchova M, Kova J (2003) Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth Met 138:447–455

    Article  CAS  Google Scholar 

  27. Sohail M, Bilal S, Shah AA (2011) Synthesis and characterization of completely andsoluble polypyrole salts via inverse emulsion polymerization using a mixture of chloroform 2- butanol as a dispersing medium. JPMS Conf Issue Mater:12–15

  28. Bilal S, Sohail M, Shah AA (2014) Synthesis and characterization of soluble and thermally stable polypyrrole-DBSA salts. 36(6):976–982

  29. Qie L, Yuan L, Zhang W et al (2012) Revisit of polypyrrole as cathode material for lithium-ion battery. 159(10):1624–1629. https://doi.org/10.1149/2.042210jes

Download references

Funding

This work is financially supported by the University Grants Commission, Government of India, in the form of Teacher Fellowship. This work is financially assisted by the DST-FIST scheme of the Government of India to acquire the FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jayalekshmi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

John, J., Manoj, M., Abhilash, A. et al. On the improvement of the electrochemical behaviour of lithium-substituted polypyrrole for applications in Li-ion cells. Ionics 27, 1733–1742 (2021). https://doi.org/10.1007/s11581-021-03920-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-03920-6

Keywords

Navigation