Skip to main content
Log in

A dithiol-based new electrolyte additive for improving electrochemical performance of NCM811 lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiNi0.8Co0.1Mn0.1O2 (NCM811) has received widespread attention due to its high discharge specific capacity. However, poor cycling performance and rate capacity limit its large-scale commercial applications. Here, we develop 4,5-Dicyano-1,3-dithiol-2-one (DDO) as a new type additive to enhance the cycling performance and rate capacity of NCM811/Li+ half cell. Electrochemical tests show that the discharge capacity retention rate of cell is 75.59% after 200 cycles with 0.1 wt% DDO-containing electrolyte, while the cell with blank electrolyte is only 15.11%. The initial coulomb efficiency and rate capacity with 0.1 wt% DDO are higher than the blank one. Through scanning electron microscope (SEM) analysis, the particle of NCM811 is smooth and integral after 50th cycled, while the particle ruptures in blank electrolyte. The outstanding electrochemical performance of NCM811 is attributed to the stable and uniform cathode electrolyte interphase (CEI) film formed by DDO. Moreover, X-ray photoelectron spectroscopy (XPS) reveals that DDO prevents the decomposition of carbonate solvents and nickel element dissolution of NCM811. Other tests also confirm that the robust CEI layer can reduce the polarization and internal resistance of the cell during cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim SB, Lee KJ, Choi WJ, Kim WS, Jang IC, Lim HH, Lee YS (2010) Preparation and cycle performance at high temperature for Li[Ni0.5Co0.2Mn0.3]O2 coated with LiFePO4. J Solid State Electrochem 14:919–922

    CAS  Google Scholar 

  2. Sun YK, Myung ST, Kim MH, Prakash J, Amine K (2005) Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. J Am Chem Soc 127:1341–13418

    Google Scholar 

  3. Lee SH, Kim HS, Jin BS (2019) Recycling of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials by a thermomechanical method. J Alloys Compd 803:1032–1036

    CAS  Google Scholar 

  4. Li J, Zhang M, Zhang D, Yan Y, Li Z (2020) An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode. Chem Eng J 402:126195

    CAS  Google Scholar 

  5. Xu K (2014) Electrolytes and interphases in Li-ion batteries and beyond. Chem Rev 114:11503–11618

    CAS  PubMed  Google Scholar 

  6. Zhang X, Cheng X, Zhang Q (2016) Nanostructured energy materials for electrochemical energy conversion and storage: a review. J Energy Chem 25:967–984

    Google Scholar 

  7. Xu J, Lin F, Doeff M, Tong W (2016) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901

    Google Scholar 

  8. Liao SY, Huang XW, Rao QS, Li YZ, Hu JQ, Zheng F, Ma ZY, Cui TT, Liu YD, Min YG (2020) A multifunctional MXene additive for enhancing the mechanical and electrochemical performances of the LiNi0.8Co0.1Mn0.1O2 cathode in lithium ion batteries. J Mater Chem A 8:4494–4504

    CAS  Google Scholar 

  9. Ran Q, Zhao H, Hu Y, Hao S, Shen Q (2020) Multifunctional integration of double shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium ion batteries at high cutoff voltage. ACS Appl Mater Interfaces 12:9268–9276

    CAS  PubMed  Google Scholar 

  10. Neudeck S, Strauss F, Garcia G, Wolf H, Janek J, Hartmann P, Brezesinski T (2019) Room temperature, liquid-phase Al2O3 surface coating approach for Ni-rich layered oxide cathode material. Chem Commun (Camb) 55:2174–2177

    CAS  Google Scholar 

  11. Senthil C, Vediappan K, Nanthagopal M, Seop KH, Santhoshkumar P, Gnanamuthu R, Lee CW (2019) Thermochemical conversion of eggshell as biological waste and its application as a functional material for lithium ion batteries. Chem Eng J 372:765–773

    CAS  Google Scholar 

  12. Hu G, Tao Y, Lu Y, Fan J, Cao Y (2019) Enhanced electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode materials modification by lithium ion conductive coating LiNbO3. ChemElectroChem 6:4773–4780

    CAS  Google Scholar 

  13. Gan Q, Qin N, Zhu Y, Huang Z, Zhang F, Gu S (2019) Polyvinylpyrrolidone induced uniform surface conductive polymer coating endows Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced cyclability for lithium ion batteries. ACS Appl Mater Interfaces 11:12594–12604

    CAS  PubMed  Google Scholar 

  14. Schipper F, Bouzaglo H, Dixit M, Erickson EM, Aurbach D (2018) From surface ZrO2 coating to bulk Zr doping by high temperature annealing of nickel-rich lithiated oxides and their enhanced electrochemical performance in lithium ion batteries. Adv Energy Mater 8:1701682

    Google Scholar 

  15. Chen M, Zhao E, Chen D, Wu M, Han S, Huang Q, Yang L, Xiao X, Hu Z (2017) Decreasing Li/Ni disorder and improving the electrochemical performances of Ni rich LiNi0.8Co0.1Mn0.1O2 by Ca doping. Inorg Chem 56:8355–8362

    CAS  PubMed  Google Scholar 

  16. Sun H, Zhang Y, Li W, Zhang D, Wang Q, Wang B (2019) Effects of Ag coating on the structural and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 as cathode material for lithium ion batteries. Electrochim Acta 327:135054

    CAS  Google Scholar 

  17. Zhang D, Liu Y, Wu L, Feng L, Jin S, Zhang R, Jin M (2019) Effect of Ti ion doping on electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode material. Electrochim Acta 328:135086

    CAS  Google Scholar 

  18. Wang S, Wang L, Wang K, Wu X, Zhou P, Miao Z, Zhou J, Zhao Y, Zhuo S (2019) Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping. J Power Sources 438:27017

    Google Scholar 

  19. Zhang M, Zhao H, Tan M, Liu J, Hu Y, Liu S, Shu X, Li H, Ran Q, Cai J, Liu X (2018) Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J Alloys Compd 774:82–92

    Google Scholar 

  20. Min K, Seo SW, Song Y, Lee HS, Cho E (2016) A first principles study of the preventive effects of Al and Mg doping on the degradation in LiNi0.8Co0.1Mn0.1O2 cathode materials. Phys Chem Chem Phys 19:1762–1769

    Google Scholar 

  21. Do SJ, Santhoshkumar P, Kang SH, Prasanna K, Jo YN, Lee CW (2018) Al-doped Li[Ni0.78Co0.1Mn0.1Al0.02]O2 for high performance of lithium ion batteries. Ceram Int 45:6672–6675

    Google Scholar 

  22. Weigel T, Schipper F, Erickson EM, Susai FA, Markovsky B, Aurbach D (2019) Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations. ACS Energy Lett 4:508–516

    CAS  Google Scholar 

  23. Susai FA, Kovacheva D, Chakraborty A, Kravchuk T, Ravikumar R, Talianker M, Grinblat J, Burstein L, Kauffmann Y, Major DT, Markovsky B, Aurbach D (2019) Improving performance of LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium ion batteries by doping with molybdenumions: theoretical and experimental studies. ACS Appl Energy Mater 2:4521–4534

    CAS  Google Scholar 

  24. Vu DL, Lee JW (2018) Na doped layered LiNi0.8Co0.1Mn0.1O2 with improved rate capability and cycling stability. J Solid State Electrochem 22:1165–1173

    CAS  Google Scholar 

  25. Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4417

    CAS  PubMed  Google Scholar 

  26. Tan S, Zhang Z, Li Y, Zheng J, Zhou Z, Yang Y (2012) Tris(hexafluoroisopropyl) phosphate as an SEI forming additive on improving the electrochemical performance of the Li[Li0.2Mn0.56Ni0.16Co0.08]O2 cathode material. J Electrochem Soc 160:A285–A292

    Google Scholar 

  27. Lou S, Ma Y, Zhou Z, Huo H, Zuo P, Cheng X, Qu X, Gao Y, Du C, Yin G (2018) Unravelling the enhanced high temperature performance of lithium rich oxide cathode with methyl diphenylphosphinite as electrolyte additive. ChemElectroChem 5:1569–1575

    CAS  Google Scholar 

  28. Lee H, Han T, Cho KY, Ryou MH, Lee YM (2016) Dopamine as a novel electrolyte additive for high-voltage lithium-ion batteries. ACS Appl Mater Interfaces 8:21366–21372

    CAS  PubMed  Google Scholar 

  29. Shi C, Shen C, Peng X, Luo C, Shen L, Sheng W, Fan J, Wang Q, Zhang S, Xu B, Xian J, Wei Y, Huang L, Li J, Sun S (2019) A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive. Nano Energy 65:104084

    CAS  Google Scholar 

  30. Lan J, Zheng Q, Zhou H, Li J, Li W (2019) Stabilizing high voltage lithium rich layered oxide cathode with a novel electrolyte additive. ACS Appl Mater Interfaces 11:28841–28850

    CAS  PubMed  Google Scholar 

  31. Lan G, Xing L, Bedrov D, Chen J, Guo R, Che Y, Li Z, Zhou H, Li W (2019) Enhanced cyclic stability of Ni-rich lithium ion battery with electrolyte film-forming additive. J Alloys Compd 821:153236

    Google Scholar 

  32. Zheng Y, Xu N, Chen S, Liao Y, Zhong G, Zhang Z, Yang Y (2020) Construction of a stable LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode interface by a multifunctional organosilicon electrolyte additive. ACS Appl Energy Mater 3:2837–2845

    CAS  Google Scholar 

  33. Zheng Q, Xing L, Yang X, Li X, Ye C, Wang K, Huang Q, Li W (2018) N-Allyl-N,N-Bis(trimethylsilyl)amine as a novel electrolyte additive to enhance the interfacial stability of a Ni-rich electrode for lithium-ion batteries. ACS Appl Mater Interfaces 10:16843–16851

    CAS  PubMed  Google Scholar 

  34. Yim T, Jang SH, Han YK (2017) Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material. J Power Sources 372:24–30

    CAS  Google Scholar 

  35. Kim J, Lee YM, Kim JY, Shin DO, Lee MJ, Hong S, Lee YG, Kim KM (2020) Effects of vinylene carbonate and 1,3-propane sultone on high-rate cycle performance and surface properties of high-nickel layered oxide cathodes. Mater Res Bull 132:111008

    Google Scholar 

  36. Rong H, Xu M, Xie B, Lin H, Zhu Y, Zheng X, Huang W, Liao Y, Li W (2016) A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0.5Mn1.5O4 cathodes. J Power Sources 329:586–593

    CAS  Google Scholar 

  37. Li Y, An Y, Tian Y, Fei H, Xiong S, Qian Y, Feng J (2019) Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive. J Electrochem Soc 166:A2736–A2740

    CAS  Google Scholar 

  38. Cui Y, Wang Y, Gu S, Qian C, Chen T, Chen S, Zhao J, Zhang S (2020) An effective interface-regulating mechanism enabled by non-sacrificial additives for high-voltage nickel-rich cathode. J Power Sources 453:227852

    CAS  Google Scholar 

  39. Zhang J, Li Q, Wang Y, Zheng J, Yu X, Li H (2018) Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater 14:1–7

    Google Scholar 

  40. Urakami H, Antonietti M, Vilela F (2012) Facile functionalization of HTC-derived carbon microspheres. Chem Commun 48:10984–10986

    CAS  Google Scholar 

  41. Wang X, Zheng X, Liao Y, Huang Q, Xing L, Xu M, Li W (2017) Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive. J Power Sources 338:108–116

    CAS  Google Scholar 

  42. Rohan R, Kuo TC, Lin J, Hsu YC, Li C, Lee JT (2016) Dinitrile-mononitrile-based electrolyte system for lithium ion battery application with the mechanism of reductive decomposition of mononitriles. J Phys Chem C 120:6450–6458

    CAS  Google Scholar 

  43. Peljo P, Girault HH (2013) Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception. Energy Environ Sci 11:2306–2309

    Google Scholar 

  44. Su C, He M, Peebles C, Zeng L, Tornheim A, Liao C, Zhang L, Wang J, Wang Y, Zhang Z (2017) Functionality selection principle for high voltage lithium-ion battery electrolyte additives. ACS Appl Mater Interfaces 9:30686–30695

    CAS  PubMed  Google Scholar 

  45. Gu S, Cui Y, Wen K, Chen S, Zhao J (2020) 3-cyano5-fluorobenzenzboronic acid as an electrolyte additive for enhancing the cycling stability of Li1.2Mn0.54Ni0.13Co0.13O2 cathode at high voltage. J Alloys Compd 829:154491

    CAS  Google Scholar 

  46. Zuo X, Fan C, Liu J, Xiao X, Wu J, Nan J (2013) Effect of tris(trimethylsilyl)borate on the high voltage capacity retention of LiNi0.5Co0.2Mn0.3O2/graphite cells. J Power Sources 229:308–312

    CAS  Google Scholar 

  47. Wagner R, Korth M, Streipert B, Kasnatscheew J, Winter M (2016) Impact of selected LiPF6 hydrolysis products on the high voltage stability of lithium ion battery cells. ACS Appl Mater Interfaces 8:30871–30878

    CAS  PubMed  Google Scholar 

  48. Zhao Y, Ding Y, Li Y, Peng L, Byon HR, Goodenough JB, Yu G (2015) A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage. Chem Soc Rev 44:7968–7996

    CAS  PubMed  Google Scholar 

  49. Diard JP, Gorrec BL, Montella C (1998) EIS study of electrochemical battery discharge on constant load. J Power Sources 70:78–84

    CAS  Google Scholar 

  50. Jung SK, Gwon H, Hong J, Park KY, Seo DH, Kim H, Hyun J, Yang W, Kang K (2014) Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries. Adv Energy Mater 4:1300787

    Google Scholar 

  51. Ruess R, Schweidler S, Hemmelmann H, Conforto G, Janek J (2020) Influence of NCM particle cracking on kinetics of lithium ion batteries with liquid or solid electrolyte. J Electrochem Soc 167:A1005–A1032

    Google Scholar 

  52. Oswald S, Mikhailova D, Scheiba F, Reichel P, Fiedler A, Ehrenberg H (2011) XPS investigations of electrolyte/electrode interactions for various Li ion battery materials. Anal Bioanal Chem 400:691–696

    CAS  PubMed  Google Scholar 

  53. Wu F, Li Q, Chen L, Lu Y, Su Y, Bao L, Chen R, Chen S (2019) Use of Ce to reinforce the interface of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode materials for lithium-ion batteries under high operating voltage. Chem Sus Chem 12:935–943

    CAS  Google Scholar 

  54. Liang C, Kong F, Longo RC, Santosh KC, Kim JS, Jeon S, Choi S, Cho K (2016) Unraveling the origin of instability in Ni rich LiNi1-2xCoxMnxO2 (NCM) cathode materials. J Phys Chem C 120:6383–6393

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by National Natural Science Foundation of China (No. 51922099, 91534109) and Innovation Academy for Light-duty Gas Turbine, Chinese Academy of Sciences (No. CXYJJ20-MS-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimou Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Chen, S. A dithiol-based new electrolyte additive for improving electrochemical performance of NCM811 lithium ion batteries. Ionics 26, 6023–6033 (2020). https://doi.org/10.1007/s11581-020-03768-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03768-2

Keywords

Navigation