Skip to main content
Log in

Correlations between the ionic conductivity and cation size in complex borohydrides

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ionic conduction in the metal borohydrides is often linked to the energy barriers of BH4 reorientation and cation diffusion. However, the ionic conduction is a complex phenomenon, and limited reports are available to establish straightforward correlations with experimental trends in alkali metal borohydrides. This communication reported the correlations between ionic conductivity and cationic size in complex borohydrides. The ionic conductivities of LiBH4, NaBH4, and KBH4 were found to decrease monotonically with increasing cationic radius. This evidences that borohydrides follow trends observed for other ionic conductors and provide further ground toward designing better borohydride-based electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Bachman JC, Muy S, Grimaud A, Chang H-H, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162. https://doi.org/10.1021/acs.chemrev.5b00563

    Article  CAS  PubMed  Google Scholar 

  2. Matsuo M, Nakamori Y, S-i O, Maekawa H, Takamura H (2007) Lithium superionic conduction in lithium borohydride accompanied by structural transition. Appl Phys Lett 91(22):224103. https://doi.org/10.1063/1.2817934

    Article  CAS  Google Scholar 

  3. Udovic TJ, Matsuo M, Unemoto A, Verdal N, Stavila V, Skripov AV, Rush JJ, Takamura H, S-i O (2014) Sodium superionic conduction in Na2B12H12. Chem Commun 50(28):3750–3752. https://doi.org/10.1039/C3CC49805K

    Article  CAS  Google Scholar 

  4. Lu F, Pang Y, Zhu M, Han F, Yang J, Fang F, Sun D, Zheng S, Wang C (2019) A high-performance Li–B–H electrolyte for all-solid-state Li batteries. Adv Funct Mater 29(15):1809219. https://doi.org/10.1002/adfm.201809219

    Article  CAS  Google Scholar 

  5. Cuan J, Zhou Y, Zhou T, Ling S, Rui K, Guo Z, Liu H, Yu X (2019) Borohydride-scaffolded Li/Na/mg fast ionic conductors for promising solid-state electrolytes. Adv Mater 31(1):1803533. https://doi.org/10.1002/adma.201803533

    Article  CAS  Google Scholar 

  6. Mo F, Chi X, Yang S, Wu F, Song Y, Sun D, Yao Y, Fang F (2019) Stable three-dimensional metal hydride anodes for solid-state lithium storage. Energy Stor. Mater. 18:423–428. https://doi.org/10.1016/j.ensm.2019.01.014

  7. Shi X, Pang Y, Wang B, Sun H, Wang X, Li Y, Yang J, Li HW, Zheng S (2020) In situ forming LiF nanodecorated electrolyte/electrode interfaces for stable all-solid-state batteries. Mater. Today Nano 10:100079. https://doi.org/10.1016/j.mtnano.2020.100079

  8. Lee W, Tamura S, Imanaka N (2017) New calcium ion conducting solid electrolyte with NASICON-type structure. Chem Lett 46(10):1486–1489. https://doi.org/10.1246/cl.170634

    Article  CAS  Google Scholar 

  9. Tärneberg R, Lundn A (1996) Ion diffusion in the high-temperature phases Li2SO4, LiNaSO4, LiAgSO4 and Li4Zn(SO4)3. Solid State Ionics 90(1):209–220. https://doi.org/10.1016/S0167-2738(96)00399-2

    Article  Google Scholar 

  10. Matsuo M, Oguchi H, Sato T, Takamura H, Tsuchida E, Ikeshoji T, S-i O (2013) Sodium and magnesium ionic conduction in complex hydrides. J Alloys Compd 580:S98–S101. https://doi.org/10.1016/j.jallcom.2013.01.058

    Article  CAS  Google Scholar 

  11. Higashi S, Miwa K, Aoki M, Takechi K (2014) A novel inorganic solid state ion conductor for rechargeable Mg batteries. Chem Commun 50(11):1320–1322. https://doi.org/10.1039/C3CC47097K

    Article  CAS  Google Scholar 

  12. Lee W, Tamura S, Imanaka N (2019) Synthesis and characterization of divalent ion conductors with NASICON-type structures. J Asian Ceram. Soc. 7(2):221–227. https://doi.org/10.1080/21870764.2019.1606141

  13. Zhao Q, Stalin S, Zhao C-Z, Archer LA (2020) Designing solid-state electrolytes for safe, energy-dense batteries. Nat Rev Mater 5(3):229–252. https://doi.org/10.1038/s41578-019-0165-5

    Article  CAS  Google Scholar 

  14. Robertson AD, West AR, Ritchie AG (1997) Review of crystalline lithium-ion conductors suitable for high temperature battery applications. Solid State Ionics 104(1):1–11. https://doi.org/10.1016/S0167-2738(97)00429-3

    Article  CAS  Google Scholar 

  15. Stevens R, Binner JGP (1984) Structure, properties and production of β-alumina. J Mater Sci 19(3):695–715. https://doi.org/10.1007/BF00540440

    Article  CAS  Google Scholar 

  16. Kummer JT (1972) β-Alumina electrolytes. Prog Solid State Chem 7:141–175. https://doi.org/10.1016/0079-6786(72)90007-6

    Article  CAS  Google Scholar 

  17. Matsuo M, S-i O (2011) Lithium fast-ionic conduction in complex hydrides: review and prospects. Adv Energy Mater 1(2):161–172. https://doi.org/10.1002/aenm.201000012

    Article  CAS  Google Scholar 

  18. Zhang T, Wang Y, Song T, Miyaoka H, Shinzato K, Miyaoka H, Ichikawa T, Shi S, Zhang X, Isobe S, Hashimoto N, Kojima Y (2018) Ammonia, a switch for controlling high ionic conductivity in lithium borohydride ammoniates. Joule 2(8):1522–1533. https://doi.org/10.1016/j.joule.2018.04.015

    Article  CAS  Google Scholar 

  19. Luo X, Rawal A, Cazorla C, Aguey-Zinsou K-F (2020) Facile self-forming Superionic conductors based on complex Borohydride surface oxidation. Adv Sustain Sys 4(3):1900113. https://doi.org/10.1002/adsu.201900113

  20. Sadikin Y, Brighi M, Schouwink P, Černý R (2015) Superionic conduction of sodium and lithium in anion-mixed hydroborates Na3BH4B12H12 and (Li0.7Na0.3)3BH4B12H12. Adv Energy Mater 5(21):1501016. https://doi.org/10.1002/aenm.201501016

    Article  CAS  Google Scholar 

  21. Lu Z, Ciucci F (2017) Metal borohydrides as electrolytes for solid-state Li, Na, Mg, and Ca batteries: a first-principles study. Chem Mater 29(21):9308–9319. https://doi.org/10.1021/acs.chemmater.7b03284

    Article  CAS  Google Scholar 

  22. Maekawa H, Matsuo M, Takamura H, Ando M, Noda Y, Karahashi T, S-i O (2009) Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J Am Chem Soc 131(3):894–895. https://doi.org/10.1021/ja807392k

    Article  CAS  PubMed  Google Scholar 

  23. Banfi L, Narisano E (2005) Lithium borohydride. In: Encyclopedia of Reagents for Organic Synthesis

  24. Lai Q, Aguey-Zinsou K-F (2017) Destabilisation of Ca(BH4)2 and Mg(BH4)2 via confinement in nanoporous Cu2S hollow spheres. Sustain Energy Fuels 1(6):1308–1319. https://doi.org/10.1039/C7SE00121E

  25. Soulié JP, Renaudin G, Černý R, Yvon K (2002) Lithium boro-hydride LiBH4: I. crystal structure. J Alloys Compd 346(1):200–205. https://doi.org/10.1016/S0925-8388(02)00521-2

    Article  Google Scholar 

  26. Renaudin G, Gomes S, Hagemann H, Keller L, Yvon K (2004) Structural and spectroscopic studies on the alkali borohydrides MBH4 (M = Na, K, Rb, Cs). J Alloys Compd 375(1):98–106. https://doi.org/10.1016/j.jallcom.2003.11.018

    Article  CAS  Google Scholar 

  27. Babanova OA, Soloninin AV, Skripov AV, Ravnsbæk DB, Jensen TR, Filinchuk Y (2011) Reorientational motion in alkali-metal borohydrides: NMR data for RbBH4 and CsBH4 and systematics of the activation energy variations. J Phys Chem C 115(20):10305–10309. https://doi.org/10.1021/jp201735q

    Article  CAS  Google Scholar 

  28. Buchter F, Łodziana Z, Mauron P, Remhof A, Friedrichs O, Borgschulte A, Züttel A, Sheptyakov D, Strässle T, Ramirez-Cuesta AJ (2008) Dynamical properties and temperature induced molecular disordering of LiBH4 and LiBD4. Phys Rev B 78(9):094302. https://doi.org/10.1103/PhysRevB.78.094302

    Article  CAS  Google Scholar 

  29. Soloninin AV (2019) Anion mobility and cation diffusion in alkali metal borohydrides. Phys Met Metallogr 120(1):41–49. https://doi.org/10.1134/S0031918X19010046

    Article  CAS  Google Scholar 

  30. Paskevicius M, Jepsen LH, Schouwink P, Černý R, Ravnsbæk DB, Filinchuk Y, Dornheim M, Besenbacher F, Jensen TR (2017) Metal borohydrides and derivatives – synthesis, structure and properties. Chem Soc Rev 46(5):1565–1634. https://doi.org/10.1039/C6CS00705H

    Article  CAS  PubMed  Google Scholar 

  31. Ikeshoji T, Tsuchida E, Morishita T, Ikeda K, Matsuo M, Kawazoe Y, S-i O (2011) Fast-ionic conductivity of Li+in LiBH4. Phys Rev B 83(14):144301. https://doi.org/10.1103/PhysRevB.83.144301

    Article  CAS  Google Scholar 

  32. Remhof A, Łodziana Z, Martelli P, Friedrichs O, Züttel A, Skripov AV, Embs JP, Strässle T (2010) Rotational motion of BH4 units in MBH4 (M=Li, Na, K) from quasielastic neutron scattering and density functional calculations. Phys Rev B 81(21):214304. https://doi.org/10.1103/PhysRevB.81.214304

    Article  CAS  Google Scholar 

  33. Epp V, Wilkening M (2010) Fast Li diffusion in crystalline LiBH4 due to reduced dimensionality: frequency-dependent NMR spectroscopy. Phys Rev B 82(2):020301. https://doi.org/10.1103/PhysRevB.82.020301

    Article  CAS  Google Scholar 

  34. Lai Q, Sun Y, Wang T, Modi P, Cazorla C, Demirci UB, Ares Fernandez JR, Leardini F, Aguey-Zinsou K-F (2019) How to design hydrogen storage materials? Fundamentals, synthesis, and storage tanks. Adv Sustain Sys 3(9):1900043. https://doi.org/10.1002/adsu.201900043

Download references

Acknowledgements

We acknowledge support from the UNSW Digital Grid Futures Institute, UNSW Sydney, under a cross-disciplinary fund scheme and the ARC Research Hub on Integrated Energy Storage solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kondo-Francois Aguey-Zinsou.

Ethics declarations

Competing interest

The authors declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 357 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Aguey-Zinsou, KF. Correlations between the ionic conductivity and cation size in complex borohydrides. Ionics 26, 5287–5291 (2020). https://doi.org/10.1007/s11581-020-03756-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03756-6

Keywords

Navigation