Skip to main content

High power density Al-air batteries with commercial three-dimensional aluminum foam anode

Abstract

Aluminum (Al) is the desired material for metal-air batteries, owing to its attractive electrochemical performance. Unfortunately, the actual power densities of the batteries are relatively low. This research describes a high power density Al-air battery equipped with commercial three-dimensional (3D) Al foam as the anode coupled with dual cathodes in NaOH electrolyte. The corrosion responses and electrochemical performances of the 3D Al foam are investigated in 1, 2, and 4 mol L−1 NaOH solutions. Compared with the dense Al plate, the Al foam owns better electrochemical performances in 4 mol L−1 NaOH solution. The peak power density of the Al foam (80.6 mW cm−2) increases by ~ 56.84%, relative to the Al plate (51.2 mW cm−2). At 100 mA cm−2, the capacity density of Al foam reaches 1983 mAh g−1, and the energy density comes to 1567 Wh Kg−1. Considering the cost and performance, the commercial 3D Al foam anode with a large specific surface and small electrode polarization is expected to be a promising anode material for the Al-air batteries.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2:503–527. https://doi.org/10.1146/annurev-chembioeng-061010-114116

    CAS  Article  PubMed  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors. Chem Rev 104(10):4245–4270. https://doi.org/10.1021/cr020730k

    CAS  Article  PubMed  Google Scholar 

  3. Liu J, Zhang X, Chen M, Li L, Zhu B, Tang J, Liu S (2011) DFT study on surface properties and dissolution trends of Al(100) surfaces doped with Zn, Ga, In, Sn and Pb. Appl Surf Sci 257(9):4004–4009. https://doi.org/10.1016/j.apsusc.2010.11.165

    CAS  Article  Google Scholar 

  4. Shao HB, Wang JM, Zhang Z, Zhang JQ, Cao CN (2003) The cooperative effect of calcium ions and tartrate ions on the corrosion inhibition of pure aluminum in an alkaline solution. Mater Chem Phys 77(2):305–309. https://doi.org/10.1016/S0254-0584(02)00006-8

    CAS  Article  Google Scholar 

  5. Chau KT, Wong YS, Chan CC (1999) An overview of energy sources for electric vehicles. Energy Convers Manag 40(10):1021–1039. https://doi.org/10.1016/S0196-8904(99)00021-7

    CAS  Article  Google Scholar 

  6. Jiang H, Liu Y, Li W, Li J (2018) Co nanoparticles confined in 3D nitrogen-doped porous carbon foams as bifunctional electrocatalysts for long-life rechargeable Zn-air batteries. Small 14(13):e1703739. https://doi.org/10.1002/smll.201703739

    CAS  Article  PubMed  Google Scholar 

  7. Rahman MA, Wang X, Wen C (2013) High energy density metal-air batteries: a review. J Electrochem Soc 160(10):A1759–A1771. https://doi.org/10.1149/2.062310jes

    CAS  Article  Google Scholar 

  8. Wang Q, Lei Y, Chen Z, Wu N, Wang Y, Wang B, Wang Y (2018) Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J Mater Chem A 6(2):516–526. https://doi.org/10.1039/c7ta08423d

    CAS  Article  Google Scholar 

  9. Lee J-S, Tai Kim S, Cao R, Choi N-S, Liu M, Lee KT, Cho J (2011) Metal-air batteries with high energy density: Li-air versus Zn-air. Adv Energy Mater 1(1):34–50. https://doi.org/10.1002/aenm.201000010

    CAS  Article  Google Scholar 

  10. Jiang H, Gu J, Zheng X, Liu M, Qiu X, Wang L, Li W, Chen Z, Ji X, Li J (2019) Defect-rich and ultrathin N doped carbon nanosheets as advanced trifunctional metal-free electrocatalysts for the ORR, OER and HER. Energy Environ Sci 12(1):322–333. https://doi.org/10.1039/c8ee03276a

    CAS  Article  Google Scholar 

  11. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Ramli W, Daud WRW, Sahari J (2015) Recent developments in materials for aluminum-air batteries: a review. J Ind Eng Chem 32:1–20. https://doi.org/10.1016/j.jiec.2015.08.004

    CAS  Article  Google Scholar 

  12. Wang HZ, Leung DYC, Leung MKH, Ni M (2009) A review on hydrogen production using aluminum and aluminum alloys. Renew Sust Energ Rev 13(4):845–853. https://doi.org/10.1016/j.rser.2008.02.009

    CAS  Article  Google Scholar 

  13. Li Q, Bjerrum NJ (2002) Aluminum as anode for energy storage and conversion: a review. J Power Sources 110(1):1–10. https://doi.org/10.1016/S0378-7753(01)01014-X

    CAS  Article  Google Scholar 

  14. Ma J, Wen J, Gao J, Li Q (2014) Performance of Al-0.5 Mg-0.02 Ga-0.1 Sn-0.5 Mn as anode for Al-air battery. J Electrochem Soc 161(3):A376–A380. https://doi.org/10.1149/2.074403jes

    CAS  Article  Google Scholar 

  15. El Shayeb HA, Abd El Wahab FM, Zein El Abedin S (2001) Electrochemical behaviour of Al, Al-Sn, Al-Zn and Al-Zn-Sn alloys in chloride solutions containing stannous ions. Corros Sci 43(4):655–669. https://doi.org/10.1016/S0010-938X(00)00101-3

    Article  Google Scholar 

  16. Wang Q, Miao H, Xue Y, Sun S, Li S, Liu Z (2017) Performances of an Al-0.15 Bi-0.15 Pb-0.035 Ga alloy as an anode for Al-air batteries in neutral and alkaline electrolytes. RSC Adv 7(42):25838–25847. https://doi.org/10.1039/c7ra02918g

    CAS  Article  Google Scholar 

  17. Despić AR, Dražić DM, Purenović MM, Ciković N (1976) Electrochemical properties of aluminium alloys containing indium, gallium and thallium. J Appl Electrochem 6(6):527–542. https://doi.org/10.1007/bf00614541

    Article  Google Scholar 

  18. Deyab MA (2017) 1-Allyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide as an effective organic additive in aluminum-air battery. Electrochim Acta 244:178–183. https://doi.org/10.1016/j.electacta.2017.05.116

    CAS  Article  Google Scholar 

  19. Nie Y, Gao J, Wang E, Jiang L, An L, Wang X (2017) An effective hybrid organic/inorganic inhibitor for alkaline aluminum-air fuel cells. Electrochim Acta 248:478–485. https://doi.org/10.1016/j.electacta.2017.07.108

    CAS  Article  Google Scholar 

  20. Egan DR, de Leon CP, Wood RJK, Jones RL, Stokes KR, Walsh FC (2013) Developments in electrode materials and electrolytes for aluminium-air batteries. J Power Sources 236:293–310. https://doi.org/10.1016/j.jpowsour.2013.01.141

    CAS  Article  Google Scholar 

  21. Zhang Z, Zuo C, Liu Z, Yu Y, Zuo Y, Song Y (2014) All-solid-state Al-air batteries with polymer alkaline gel electrolyte. J Power Sources 251:470–475. https://doi.org/10.1016/j.jpowsour.2013.11.020

    CAS  Article  Google Scholar 

  22. Gelman D, Shvartsev B, Ein-Eli Y (2014) Aluminum–air battery based on an ionic liquid electrolyte. J Mater Chem A 2(47):20237–20242. https://doi.org/10.1039/c4ta04721d

    CAS  Article  Google Scholar 

  23. Li C, Ji W, Chen J, Tao Z (2007) Metallic aluminum nanorods: synthesis via vapor-deposition and applications in Al/air batteries. Chem Mater 19(24):5812–5814. https://doi.org/10.1021/cm7018795

    CAS  Article  Google Scholar 

  24. Popovich NA, Govind R (2002) Studies of a granular aluminum anode in an alkaline fuel cell. J Power Sources 112(1):36–40. https://doi.org/10.1016/S0378-7753(02)00306-3

    CAS  Article  Google Scholar 

  25. Xu Y, Zhao Y, Ren J, Zhang Y, Peng H (2016) An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance. Angew Chem Int Ed 55(28):7979–7982. https://doi.org/10.1002/anie.201601804

    CAS  Article  Google Scholar 

  26. Jingling M, Jiuba W, Hongxi Z, Quanan L (2015) Electrochemical performances of Al-0.5Mg-0.1Sn-0.02In alloy in different solutions for Al–air battery. J Power Sources 293:592–598. https://doi.org/10.1016/j.jpowsour.2015.05.113

    CAS  Article  Google Scholar 

  27. Jiang H, Wang Y, Hao J, Liu Y, Li W, Li J (2017) N and P co-functionalized three-dimensional porous carbon networks as efficient metal-free electrocatalysts for oxygen reduction reaction. Carbon 122:64–73. https://doi.org/10.1016/j.carbon.2017.06.043

    CAS  Article  Google Scholar 

  28. Macdonald DD, Lee KH, Moccari A, Harrington D (1988) Evaluation of alloy anodes for aluminum-air batteries: corrosion studies. Corros Sci 44(9):652–657. https://doi.org/10.5006/1.3584979

    CAS  Article  Google Scholar 

  29. Moon S-M, Pyun S-I (1999) The formation and dissolution of anodic oxide films on pure aluminium in alkaline solution. Electrochim Acta 44(14):2445–2454. https://doi.org/10.1016/S0013-4686(98)00368-5

    CAS  Article  Google Scholar 

  30. Fan L, Lu H, Leng J, Sun Z, Chen C (2016) The study of industrial aluminum alloy as anodes for aluminum-air batteries in alkaline electrolytes. J Electrochem Soc 163(2):A8–A12. https://doi.org/10.1149/2.0021602jes

    CAS  Article  Google Scholar 

  31. Gao JW, Wen JB, He JG (2013) The research of electrochemical properties of Al-Mg-Sn-Ga-Bi alloys in alkaline electrolyte. Adv Mater Res 800:488–491. https://doi.org/10.4028/www.scientific.net/AMR.800.488

    CAS  Article  Google Scholar 

  32. Wang JB, Wang JM, Shao HB, Zhang JQ, Cao CN (2007) The corrosion and electrochemical behaviour of pure aluminium in alkaline methanol solutions. J Appl Electrochem 37(6):753–758. https://doi.org/10.1007/s10800-007-9310-8

    CAS  Article  Google Scholar 

  33. Emregül KC, Aksüt AA (2000) The behavior of aluminum in alkaline media. Corros Sci 42(12):2051–2067. https://doi.org/10.1016/S0010-938X(00)00055-X

    Article  Google Scholar 

  34. Doche ML, Rameau JJ, Durand R, Novel-Cattin F (1999) Electrochemical behaviour of aluminium in concentrated NaOH solutions. Corros Sci 41(4):805–826. https://doi.org/10.1016/S0010-938X(98)00107-3

    CAS  Article  Google Scholar 

  35. Ma JL, Wen JB, Gao JW, Li QA (2014) Performance of Al-1Mg-1Zn-0.1Ga-0.1Sn as anode for Al-air battery. Electrochim Acta 129:69–75. https://doi.org/10.1016/j.electacta.2014.02.080

    CAS  Article  Google Scholar 

  36. Fan L, Lu HM (2015) The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes. J Power Sources 284:409–415. https://doi.org/10.1016/j.jpowsour.2015.03.063

    CAS  Article  Google Scholar 

  37. Mukherjee A, Basumallick IN (1996) Complex behaviour of aluminium dissolution in alkaline aqueous 2-propanol solution. J Power Sources 58(2):183–187. https://doi.org/10.1016/S0378-7753(96)02388-9

    CAS  Article  Google Scholar 

  38. Jüttner K (1990) Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim Acta 35(10):1501–1508. https://doi.org/10.1016/0013-4686(90)80004-8

    Article  Google Scholar 

  39. King AD, Birbilis N, Scully JR (2014) Accurate electrochemical measurement of magnesium corrosion rates; a combined impedance, mass-loss and hydrogen collection study. Electrochim Acta 121:394–406. https://doi.org/10.1016/j.electacta.2013.12.124

    CAS  Article  Google Scholar 

  40. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani MJEA (2010) Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim Acta 55(21):6218–6227

    CAS  Article  Google Scholar 

  41. Vida TA (2017) Electrochemical corrosion behavior of as-cast Zn-rich Zn-Mg Alloys in a 0.06M NaCl solution. Int J Electrochem Sci:5264–5283. https://doi.org/10.20964/2017.06.37

  42. Shao HB, Wang JM, Zhang Z, Zhang JQ, Cao CN (2003) Electrochemical impedance spectroscopy analysis on the electrochemical dissolution of aluminum in an alkaline solution. J Electroanal Chem 549:145–150. https://doi.org/10.1016/s0022-0728(03)00266-3

    CAS  Article  Google Scholar 

  43. Jia CCW, Haichao L (1989) Effect of Cl-ion on the impedance of passive-film-electrodes. J Chin Soc Corros Prot 9(4):261–270

    Google Scholar 

  44. Li J, Zheng Z, Zhang Z, Zhang J (2005) Electrochemical impedance spectroscopy of Al alloys during exfoliation corrosion. J Chin Soc Corros Prot 25(1):48–52

    Google Scholar 

  45. Osório WR, Freitas ES, Garcia A (2013) EIS parameters and cell spacings of an Al–Bi alloy in NaCl solution. Electrochim Acta 108:781–787. https://doi.org/10.1016/j.electacta.2013.07.036

    CAS  Article  Google Scholar 

  46. Armstrong RD, Braham VJ (1996) The mechanism of aluminium corrosion in alkaline solutions. Corros Sci 38(9):1463–1471. https://doi.org/10.1016/0010-938X(96)00037-6

    CAS  Article  Google Scholar 

  47. Snizhko LO, Yerokhin AL, Gurevina NL, Misnyankin DO, Pilkington A, Leyland A, Matthews A (2005) A model for galvanostatic anodising of Al in alkaline solutions. Electrochim Acta 50(27):5458–5464. https://doi.org/10.1016/j.electacta.2005.03.052

    CAS  Article  Google Scholar 

  48. Nestoridi M, Pletcher D, Wood RJK, Wang S, Jones RL, Stokes KR, Wilcock I (2008) The study of aluminium anodes for high power density Al/air batteries with brine electrolytes. J Power Sources 178(1):445–455. https://doi.org/10.1016/j.jpowsour.2007.11.108

    CAS  Article  Google Scholar 

  49. Wang N, Wang R, Peng C, Peng B, Feng Y, Hu C (2014) Discharge behaviour of Mg-Al-Pb and Mg-Al-Pb-In alloys as anodes for Mg-air battery. Electrochim Acta 149:193–205. https://doi.org/10.1016/j.electacta.2014.10.053

    CAS  Article  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 51474255) and the Hunan Provincial Science and Technology Plan Project, China (No. 2016TP1007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Li or Wenzhang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 239 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, S., Yang, X., Liu, Y. et al. High power density Al-air batteries with commercial three-dimensional aluminum foam anode. Ionics 26, 5045–5054 (2020). https://doi.org/10.1007/s11581-020-03618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03618-1

Keywords

  • Al-air battery
  • Commercial 3D Al foam
  • High power density
  • High energy density