Skip to main content
Log in

Effect of cation doping on the electrochemical properties of Li2MoO3 as a promising cathode material for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A series of cation-doped Li2MoO3 materials were successfully prepared by a facile method. The experimental characterizations showed that the incorporation of metal cations can change the structures of Li2MoO3 materials. In addition, Li2Mo0.96M0.04O3 materials have higher structural stabilities and electrical conductivities in comparison to the pristine sample, which results in a much improved electrochemical performance. The initial discharge capacities are respectively 246.87, 256.92, 255.38, 271.12, and 261.25 mAh g−1 for Li2MoO3, Li2Mo0.96Zn0.04O3, Li2Mo0.96Mg0.04O3, Li2Mo0.96Cr0.04O3, and Li2Mo0.96La0.04O3. Li2Mo0.96La0.04O3 has the best performance, and it can deliver a specific capacity of 149.89 mAh g−1 at the 50th cycle at a charge/discharge current density of 34 mA g−1. Our experiments have identified the promising role of cation doping and offered some important information for the design and optimization of Li2MoO3-based cathode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi T-F, Wei T-T, Li Y, He Y-B, Wang Z-B (2020) Efforts on enhancing the Li-ion diffusion coefficient and electronic conductivity of titanate-based anode materials for advanced Li-ion batteries. Energy Storage Mater 26:165–197

    Google Scholar 

  2. Hsu K-F, Tsay S-Y, Hwang B-J (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem 14(17):2690–2695

    CAS  Google Scholar 

  3. Chen Y-Q, Xiang K-X, Zhu Y-R, Xiao L, Chen W-H, Chen X-H, Chen H (2019) Bio-template fabrication of nitrogen-doped Li3V2(PO4)3/carbon composites from cattail fibers and their high-rate performance in lithium-ion batteries. J Alloys Compd 782:89–99

    CAS  Google Scholar 

  4. Zhu H, Deng W-N, Chen L, Zhang S-Y Nitrogen doped carbon layer of Li2MnSiO4 with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta 295:956-965

  5. Li Y-X, Gong Z-L, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174(2):528–532

    CAS  Google Scholar 

  6. Lou M, Zhong H, Yu H-T, Fan S-S, Xie Y, Yi T-F (2017) Li1.2Mn0.54Ni0.13Co0.13O2 hollow hierarchical microspheres with enhanced electrochemical performances as cathode material for lithium-ion battery application. Electrochim Acta 237:217–226

    CAS  Google Scholar 

  7. Yu Z (2018) Improved electrochemical performances of carbon-coated Li2MoO3 cathode materials for Li-ion batteries. Int J Electrochem Sci 64:4504–4511

    Google Scholar 

  8. Jang J, Kim Y, Chae OB, Yoon T, Kim SM, Kim HS, Park H, Ryu JH, Oh SM (2014) A first-cycle coulombic efficiency higher than 100% observed for a Li2MO3 (M=Mo or Ru) electrode. Angew Chem Int Ed Eng 53(40):10654–10657

    CAS  Google Scholar 

  9. Wang JL, Zhao Y, Zhang XQ, Wu HL, Hu SL, Wei KY, Cui YX, Su W, Cui YH (2019) Trace molybdenum doped Li2RuO3 as cathode material with enhanced performance for lithium ion batteries. Sustainable Energy & Fuels 3:2697–2704

    CAS  Google Scholar 

  10. Liu S, Feng X, Wang X, Shen X, Hu E, Xiao R, Yu R, Yang H, Song N, Wang Z, Yang X, Chen L (2018) Another strategy, detouring potential decay by fast completion of cation mixing. Adv Energy Mater 8(15):1703092

    Google Scholar 

  11. Kobayashi H, Tabuchi M, Shikano M, Kageyama H, Kanno R (2003) Structure, and magnetic and electrochemical properties of layered oxides, Li2IrO3. J Mater Chem 13(4):957–962

    CAS  Google Scholar 

  12. Pearce PE, Perez AJ, Rousse G, Saubanere M, Batuk D, Foix D, McCalla E, Abakumov AM, Van Tendeloo G, Doublet ML, Tarascon JM (2017) Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode beta-Li2IrO3. Nat Mater 16(5):580–586

    CAS  PubMed  Google Scholar 

  13. Xu C-S, Jiang W-F, Yu H-T, Guo C-F, Xie Y, Ren N, Yi T-F (2019) Hollow and hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes as promising cathode materials for lithium ion battery. J Alloys Compd 807:151686

    CAS  Google Scholar 

  14. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mAh·g−1. J Mater Chem 21(27):10179–10188

    CAS  Google Scholar 

  15. Ma J, Zhou Y-N, Gao Y, Yu X, Kong Q, Gu L, Wang Z, Yang X-Q, Chen L (2014) Feasibility of using li2moo3 in constructing li-rich high energy density cathode materials. Chem Mater 26(10):3256–3262

    CAS  Google Scholar 

  16. Li D, He H, Wu X, Li M (2016) Electrochemical behavior of submicron Li2MoO3 as anodes in lithium-ion batteries. J Alloys Compd 682:759–765

    CAS  Google Scholar 

  17. Self EC, Zou L, Zhang M-J, Opfer R, Ruther RE, Veith GM, Song B, Wang C, Wang F, Huq A, Nanda J (2018) Synthesis and electrochemical and structural investigations of oxidatively stable Li2MoO3 and xLi2MoO3·(1–x)LiMO2 composite cathodes. Chem Mater 30(15):5061–5068

    CAS  Google Scholar 

  18. Ma J, Gao Y, Wang Z, Chen L (2014) Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. J Power Sources 258:314–320

    CAS  Google Scholar 

  19. Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2016) Enhanced electrochemical performance of LiNi0.5Co0.2Mn0.3O2 cathodes produced via nanoscale coating of Li+-conductive Li2SnO3. Electrochim Acta 213:547–556

    CAS  Google Scholar 

  20. Lou M, Fan S-S, Yu H-T, Xie Y, Zhang Q, Zhu Y-R, Yi T-F, Tian G-H (2018) Mg-doped Li1.2Mn0.54Ni0.13Co0.13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. J Alloys Compd 739:607–615

    CAS  Google Scholar 

  21. Wang C, Xu Y, Sun X, Zhang B, Chen Y, He S (2018) Enhanced electrochemical properties of F-doped Li2MnSiO4/C for lithium ion batteries. J Power Sources 378:345–352

    CAS  Google Scholar 

  22. Deng C, Zhang S, Yang SY, Fu BL, Ma L (2011) Synthesis and characterization of Li2Fe0.97M0.03SiO4 (M=Zn2+, Cu2+, Ni2+) cathode materials for lithium ion batteries. J Power Sources 196(1):386–392

    CAS  Google Scholar 

  23. Kang SH, Amine K (2005) Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources 146(1-2):654–657

    CAS  Google Scholar 

  24. Park K-S, Im D, Benayad A, Dylla A, Stevenson KJ, Goodenough JB (2012) LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety. Chem Mater 24(14):2673–2683

    CAS  Google Scholar 

  25. Yi H, Hu C, He X, Xu H (2014) Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics 21(3):667–671

    Google Scholar 

  26. Yu Z, Wang X, Wan P, Zhu S, Sun Z, Zhang G, Chu W (2019) Li1.233Mo0.467Fe0.3O2 as an advanced cathode material for high-performance lithium ion battery. Mater Lett 249:45–48

    CAS  Google Scholar 

  27. Reddy MV, Jie TW, Jafta CJ, Ozoemena KI, Mathe MK, Nair AS, Peng SS, Idris MS, Balakrishna G, Ezema FI, Chowdari BVR (2014) Studies on bare and Mg-doped LiCoO2 as a cathode material for lithium ion batteries. Electrochim Acta 128:192–197

    CAS  Google Scholar 

  28. Fang H, Yi H, Hu C, Yang B, Yao Y, Ma W, Dai Y (2012) Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochim Acta 71:266–269

    CAS  Google Scholar 

  29. Wang Y, Chen Y, Cheng S, He L (2011) Improving electrochemical performance of LiMnPO4 by Zn doping using a facile solid state method. Korean J Chem Eng 28(3):964–968

    CAS  Google Scholar 

  30. Feng Y, Li Y, Hou F (2009) Preparation and electrochemical properties of Cr doped LiV3O8 cathode for lithium ion batteries. Mater Lett 63(15):1338–1340

    CAS  Google Scholar 

  31. Zhang S, Deng C, Fu BL, Yang SY, Ma L (2010) Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries. Electrochim Acta 55(28):8482–8489

    CAS  Google Scholar 

  32. Wang F, Wang Y, Sun D, Wang L, Yang J, Jia H (2014) High performance Li2MnSiO4 prepared in molten KCl–NaCl for rechargeable lithium ion batteries. Electrochim Acta 119:131–137

    CAS  Google Scholar 

  33. Luo D, Fang S, Yang L, S-i H (2017) High-rate and long-life Li1.18Mn0.56Ni0.13Co0.13O2 cathodes of Li-ion batteries. J Alloys Compd 723:243–251

    CAS  Google Scholar 

  34. Wu C, Wu F, Chen LQ, Huang XJ (2002) X-ray diffraction and X-ray photoelectron spectroscopy analysis of Cr-doped spinel LiMn2O4 for lithium ion batteries. Solid State Ionics (152-153):335-339

  35. Lee J, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343:519–522

    CAS  PubMed  Google Scholar 

  36. Pang WK, Lee JY, Wei YS, Wu SH (2013) Preparation and characterization of Cr-doped LiMnO2 cathode materials by Pechini's method for lithium ion batteries. Mater Chem Phys 139(1):241–246

    CAS  Google Scholar 

  37. Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54(24):5844–5850

    CAS  Google Scholar 

  38. Zhong S, Zhao B, Li Y, Liu Y, Liu J, Li F (2009) Synthesis and electrochemical properties of Cr-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Wuhan Univ Technol Mater Sci Ed 24(3):343–346

    CAS  Google Scholar 

  39. Luo S, Tian Y, Li H, Shi K, Tang Z, Zhang Z (2010) Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries. J Rare Earths 28(3):439–442

    CAS  Google Scholar 

  40. Sun Y, Hu X, Luo W, Huang Y (2012) Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. J Mater Chem 22(2):425–431

    CAS  Google Scholar 

  41. Zhao X, Cao M, Liu B, Tian Y, Hu C (2012) Interconnected core–shell MoO2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes. J Mater Chem 22(26):13334–13340

    CAS  Google Scholar 

  42. Palanisamy K, Kim Y, Kim H, Kim JM, Yoon W-S (2015) Self-assembled porous MoO2/graphene microspheres towards high performance anodes for lithium ion batteries. J Power Sources 275:351–361

    CAS  Google Scholar 

  43. Luo W, Hu X, Sun Y, Huang Y (2011) Electrospinning of carbon-coated MoO2 nanofibers with enhanced lithium-storage properties. Phys Chem Chem Phys 13(37):16735–16740

    CAS  PubMed  Google Scholar 

  44. Wang C, Sun L, Zhang F, Wang X, Sun Q, Cheng Y, Wang L (2017) Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small 13(32):1701246

    Google Scholar 

  45. Chen YT, . Jena A, Pang WK, Peterson VK, Sheu HS, Chang H, Liu RS (2017) Voltammetric enhancement of Li-ion conduction in Al-doped Li7-xLa3Zr2O12 solid electrolyte. J Phys Chem C 121(29): 15565-15573

    CAS  Google Scholar 

  46. Zhang JY, Zhao ZY, Wang XY, Yu T, Guan J, Yu ZT, Li ZS, Zou ZG (2010) Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells. J Phys Chem C 114:18396–18400

    CAS  Google Scholar 

  47. Kumakura S, Shirao Y, Kubota K, Komaba S (2016) Preparation and electrochemical properties of Li2MoO3/C composites for rechargeable Li-ion batteries. Phys Chem Chem Phys 18(41):28556–28563

    CAS  PubMed  Google Scholar 

  48. Yi T-F, Qiu L-Y, Mei J, Qi S-Y, Cui P, Luo S, Zhu Y-R, Xie Y, He Y-B (2020) Porous spherical NiO@NiMoO4@PPy nanoarchitectures as advanced electrochemical pseudocapacitor materials. Sci Bull 65(71):546–556

    CAS  Google Scholar 

  49. Shi C-F, Xiang K-X, Zhu Y-R, Chen X-H, Zhou W, Chen H (2017) Preparation and electrochemical properties of nanocable-like Nb2O5/surface-modified carbon nanotubes composites for anode materials in lithium ion batterieS. Electrochim Acta 246(20):1088–1096

    CAS  Google Scholar 

  50. He Y, Xiang K-X, Zhou W, Zhu Y-R, Chen X-H, Chen H (2018) Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries. Chem Eng J 353:666–678

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (nos. 21773060 and 51774002), Youth Innovation Team Project of Science and Technology of Heilongjiang University (2018-KYYWF-1593), Young Scholar Project of the Long Jiang Scholars Program (Q201818), and National Defense Science and Technology Key Laboratory fund (JZX7Y201911SY009601).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-dong Wang, Ying Xie or Ting-Feng Yi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, R., Yu, HT., Guo, CF. et al. Effect of cation doping on the electrochemical properties of Li2MoO3 as a promising cathode material for lithium-ion battery. Ionics 26, 4413–4422 (2020). https://doi.org/10.1007/s11581-020-03607-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03607-4

Keywords

Navigation