Skip to main content
Log in

Li2MoO3 microspheres with excellent electrochemical performances as cathode material for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Layered Li2MoO3 (LMS) is a promising building block for constructing high capacity positive electrode materials for lithium-ion battery applications. But the samples without a well-controlled morphology restrict the improvement of the performance. By using the MoO2 microsphere as a self-template, Li2MoO3 materials with a hierarchical micro-spherical morphology were prepared successfully. The structural details were analyzed by XRD, SEM, TEM, and EDS techniques, while N2 adsorption and desorption isotherm confirmed that Li2MoO3 microspheres have a mesoporous structure with a surface area ~ 7.4 times larger than bulk Li2MoO3. Therefore, LMO microsphere exhibits an excellent electrochemical performance. It can deliver the capacities of 246.91, 184.75, 160.10, 127.57, 99.61, and 75.63 mA h g−1 at the current densities of 34, 100, 170, 340, 680, and 1000 mA g−1, which are larger than the values of the bulk samples at the same rates. Our experiments also confirmed that the special morphology is helpful for the reduction of the charge transfer resistance and the improvement of the reaction activity and reversibility of the materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zuo DC, Song SC, An CS, Tang LB, He ZJ, Zheng JC (2019) Synthesis of sandwich-like structured Sn/SnOx@MXene composite through in-situ growth for highly reversible lithium storage. Nano Energy 62:401–409

    CAS  Google Scholar 

  2. Kim HS, Kim KMZ, Kim IJ, Gu HB (2007) Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries. J Power Sources 171(2):917–921

    CAS  Google Scholar 

  3. Muraliganth T, Stroukoff KR, Manthiram A (2010) Microwave-solvothermal synthesis of nanostructured Li2MSiO4/C (M = Mn and Fe) cathodes for lithium-ion batteries. Chem Mater 22(20):5754–5761

    CAS  Google Scholar 

  4. Zheng JC, Yang Z, Dai A, Tang LB, Wei HX, Li YJ, He ZJ, Lu J (2019) Boosting cell performance of LiNi0.8Co0.15Al0.05O2 via surface structure design. Small 15(50):1904854–1904863

    CAS  Google Scholar 

  5. Lu SJ, Wang ZT, Zhang XH, He ZJ, Tong H, Li YJ, Zheng JC (2020) In situ-formed hollow cobalt sulfide wrapped by reduced graphene oxide as an anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 12(2):2671–2678

    CAS  PubMed  Google Scholar 

  6. Yuan YL, Xu QJ, Liu XN, Shen W, Liu HM, Xia YY (2016) Excellent rate performance and high capacity of Mo doped layered cathode material Li Li0.2Mn0.54Ni0.13Co0.13O2 derived from an improved coprecipitation approach. Electrochim Acta 207:120–129

    CAS  Google Scholar 

  7. Liu JL, Hou MY, Yi J, Guo SS, Wang CX, Xia YY (2014) Improving the electrochemical performance of layered lithium-rich transition-metal oxides by controlling the structural defects. Energy Environ Sci 7(2):705–714

    CAS  Google Scholar 

  8. Zhao DD, Yu P, Wang L, Sun FF, Zhao L, Tian CG, Zhou W, Fu HG (2016) Self-supported Ni6MnO8 3D mesoporous nanosheet arrays with ultrahigh lithium storage properties and conversion mechanism by in-situ XAFS. Nano Res 10(1):263–275

    Google Scholar 

  9. Yu P, Liu X, Wang L, Tian CG, Yu HT, Fu HG (2017) Urchin-like V2O3/C hollow nanosphere hybrid for high-capacity and long-cycle-life lithium storage. ACS Sustain Chem Eng 5(12):11238–11245

    CAS  Google Scholar 

  10. Tan KS, Reddy MV, Subba Rao GV, Chowdari BVR (2005) High-performance LiCoO2 by molten salt (LiNO3:LiCl) synthesis for Li-ion batteries. J Power Sources 147(1–2):241–248

    CAS  Google Scholar 

  11. Li L, Zhao R, Xu TH, Wang DD, Pan D, Zhang K, Yu CY, Lu X, He GJ, Bai Y (2019) Stabilizing a high-voltage LiNi0.5Mn1.5O4 cathode towards all solid state batteries: a Li-Al-Ti-P-O solid electrolyte nano-shell with a host material. Nanoscale 11(18):8967–8977

    CAS  PubMed  Google Scholar 

  12. Fey GTK, Huang KP, Kao HM, Li WH (2011) A polyethylene glycol-assisted carbothermal reduction method to synthesize LiFePO4 using industrial raw materials. J Power Sources 196(5):2810–2818

    CAS  Google Scholar 

  13. Hamad KI, Liao JY, Smith TW, Xing YC (2018) Synthesis of layered LiMn1/3Ni1/3Co1/3O2 oxides for lithium-ion batteries using biomass-derived glycerol as solvent. Engergy Technol-ger 6(4):710–717

    CAS  Google Scholar 

  14. Yang JS, Xiao LF, He W, Fan JW, Chen ZX, Ai XP, Yang HX, Cao YL (2016) Understanding voltage decay in lithium-rich manganese-based layered cathode materials by limiting cutoff voltage. ACS Appl Mater Interfaces 8(29):18867–18877

    CAS  PubMed  Google Scholar 

  15. Wang DD, Xu TH, Li YP, Pan D, Lu X, Hu YS, Dai S, Bai Y (2018) Integrated surface functionalization of Li-rich cathode materials for Li-ion batteries. ACS Appl Mater Interfaces 10(48):41802–41813

    CAS  PubMed  Google Scholar 

  16. Wang DD, Xu TH, Li YP, Pan D, Li L, Bai Y (2018) A facile strategy to enhance the stability of Li-rich cathode: electrochemical performance improvement and exploration. Ceram Int 44(14):17425–17433

    CAS  Google Scholar 

  17. Ding X, Xiao LN, Li YX, Tang ZF, Wan JW, Wen ZY, Chen CH (2018) Improving the electrochemical performance of Li-rich Li1.2Ni0.2Mn0.6O2 by using Ni-Mn oxide surface modification. J Power Sources 390:13–19

    CAS  Google Scholar 

  18. Lou M, Yu HT, Xie Y, Zhang QY, Zhu YR, Yi TF, Tian GH (2018) Mg-doped Li1.2Mn0.54Ni0.13Co0.13O2 nano flakes with improved electrochemical performance for lithium-ion battery application. Electrochim Acta 739:607–615

    CAS  Google Scholar 

  19. Lou M, Zhong H, Yu HT, Fan SS, Xie Y, Yi TF (2017) Li1.2Mn0.54Ni0.13Co0.13O2 hollow hierarchical microspheres with enhanced electrochemical performances as cathode material for lithium-ion battery application. Electrochim Acta 237:217–226

    CAS  Google Scholar 

  20. Ohzuku T, Nagayama M, Tsuji K, Ariyoshi K (2011) High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mAh g−1. J Mater Chem 21(27):10179–10188

    CAS  Google Scholar 

  21. Xu CS, Jiang WF, Yu HT, Guo CF, Xie Y, Ren N, Yi TF (2019) Hollow and hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 micro-cubes as promising cathode materials for lithium ion battery. J Alloys Compd 807:151686–151695

    CAS  Google Scholar 

  22. Li JF, Zhan C, Lu J, Yuan YF, Yassar RS, Qiu XP, Amine K (2015) Improve first-cycle efficiency and rate performance of layered-layered Li1.2Mn0.6Ni0.2O2 using oxygen stabilizing dopant. ACS Appl Mater Interfaces 7(29):16040–16045

    CAS  PubMed  Google Scholar 

  23. Yu XQ, Liu YC, Gu L, Wu HM, Bak SM, Zhou YN, Amine K, Ehrlich SN, Li H, Nam KW, Yang XQ (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energ Mater 4(5):1300950–1300961

    Google Scholar 

  24. Bettge M, Li Y, Martin GK, Zhu Y, Wu QL, Lu WQ, Bloom I, Abraham DP (2013) Voltage fade of layered oxides: its measurement and impact on energy density. J Electrochem Soc 11:A2046–A2055

    Google Scholar 

  25. Zheng JM, Gu M, Xiao J, Zuo PJ, Wang CM, Zhang JG (2013) Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett 13(8):3824–3830

    CAS  PubMed  Google Scholar 

  26. Saubanère M, McCalla E, Tarascon JM, Doublet ML (2016) The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries. Energy Environ Sci 9(3):984–991

    Google Scholar 

  27. Xie Y, Saubanère M, Doublet ML (2017) Requirements for reversible extra-capacity in Li-rich layered oxides for Li-ion batteries. Energy Environ Sci 10(1):266–274

    CAS  Google Scholar 

  28. Mu KC, Cao YB, Hu GR, Du K, Yang H, Gan ZG, Peng ZD (2018) Enhanced electrochemical performance of Li-rich cathode Li1.2Ni0.2Mn0.6O2 by surface modification with WO3 for lithium ion batteries. Electrochim Acta 273:88–97

    CAS  Google Scholar 

  29. Xu CS, Yu HT, Guo CF, Xie Y, Ren N, Yi TF, Zhang GX (2019) Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 25(10):4567–4576

    CAS  Google Scholar 

  30. Lee JY, Urban A, Li X, Su D, Hautier G, Ceder G (2014) Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343(6170):519–522

    CAS  PubMed  Google Scholar 

  31. Ma J, Zhou YN, Gao YR, Yu XQ, Kong QY, Gu L, Wang ZX, Yang XQ, Chen LQ (2014) Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem Mater 26(10):3256–3262

    CAS  Google Scholar 

  32. Zhou YN, Ma J, Hu EY, Yu XQ, Gu L, Nam KW, Chen LQ, Wang ZX, Yang XQ (2014) Tuning charge-discharge induced unit cell breathing in layer-structured cathode materials for lithium-ion batteries. Nat Commun 5:5381–5389

    PubMed  Google Scholar 

  33. Liu S, Feng X, Wang XL, Shen X, Hu EY, Xiao RJ, Yu RC, Yang HT, Song NN, Wang ZX, Yang XQ, Chen LQ (2018) Another strategy, detouring potential decay by fast completion of cation mixing. Adv Energy Mater 8(15):1703092–1703102

    Google Scholar 

  34. Li B, Shao RW, Yan HJ, An L, Zhang B, Wei H, Ma J, Xia DG, Han XD (2016) Understanding the stability for Li-rich layered oxide Li2RuO3 cathode. Adv Funct Mater 26(9):1330–1337

    CAS  Google Scholar 

  35. Kuganathan N, Kordatos A, Chroneos A (2018) Li2SnO3 as a cathode material for lithium-ion batteries: defects, lithium ion diffusion and dopants. Sci Rep 8(1):12621–11230

    PubMed  PubMed Central  Google Scholar 

  36. Kuganathan N, Kordatos A, Fitzpatrick ME, Vovk RV, Chroneos A (2018) Defect process and lithium diffusion in Li2TiO3. Solid State Ionics 327:93–98

    CAS  Google Scholar 

  37. Lee SY, Park YJ (2019) Lithia/(Ir, Li2IrO3) nanocomposites for new cathode materials based on pure anionic redox reaction. Sci Rep 9(1):13180–13190

    PubMed  PubMed Central  Google Scholar 

  38. Self EC, Zou LF, Zhang MJ, Opfer R, Ruther RE, Veith GM, Song BH, Wang CM, Wang F, Huq A, Nanda J (2018) Synthesis and electrochemical and structural investigations of oxidatively stable Li2MoO3 and xLi2MoO3 (1-x)LiMO2 composite cathodes. Chem Mater 30(15):5061–5068

    CAS  Google Scholar 

  39. Ma J, Gao RY, Wang ZX, Chen L (2014) Structural and electrochemical stability of Li-rich layer structured Li2MoO3 in air. J Power Sources 258:314–320

    CAS  Google Scholar 

  40. Kumakura S, Shirao Y, Kubota K, Komaba S (2016) Preparation and electrochemical properties of Li2MoO3/C composites for rechargeable Li-ion batteries. Phys Chem Chem Phys 18(41):28556–28563

    CAS  PubMed  Google Scholar 

  41. Li D, He HY, Wu XM, Li MQ (2016) Electrochemical behavior of submicron Li2MoO3 as anodes in lithium-ion batteries. J Alloys Compd 682:759–765

    CAS  Google Scholar 

  42. Kobayashi H, Tabuchi M, Shikano M, Nishimura Y, Kageyama H, Ishida T, Nakamura H, Kurioka Y, Kanno R (1999) Synthesis and electrochemical properties of lithium molybdenum oxides. J Power Sources 81-81:524–529

    Google Scholar 

  43. Takahashi Y, Kijima N, Hayakawa H, Awaka J, Akimoto J (2008) Single-crystal synthesis and structure refinement of Li2MoO3.J. Phys Chem Solids 69(5–6):1518–1520

    CAS  Google Scholar 

  44. Park KS, Im D, Benayad A, Dylla A, Stevenson KJ, Goodenough JB (2012) LiFeO2-incorporated Li2MoO3 as a cathode additive for lithium-ion battery safety. Chem Mater 24(14):2673–2683

    CAS  Google Scholar 

  45. Yu ZY, Yu TL, Li WJ, Hao JS, Liu HX, Sun N, Lu MY, Ma J (2018) Improved electrochemical performances of carbon-coated Li2MoO3 cathode materials for Li-ion batteries. Int J Electrochem Sci 13(5):4504–4511

    CAS  Google Scholar 

  46. Yu ZY, Hao JH, Li WJ, Liu HX (2019) Enhanced electrochemical performances of cobalt-doped Li2MoO3 cathode materials. Mater 12(6):843–854

    CAS  Google Scholar 

  47. Hu YR, Wu K, Zhang F, Zhou HH, Qi LM (2018) Hierarchical MnO@C hollow nanospheres for advanced lithium-ion battery anodes. ACS Appl Nano Mater 2(1):429–439

    Google Scholar 

  48. Ying JR, Jiang CY, Wan CR (2004) Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J Power Sources 129(2):264–269

    CAS  Google Scholar 

  49. Fan SS, Zhong H, Yu HT, Lou M, Xie Y, Zhu YR (2017) Hollow and hierarchical Na2Li2Ti6O14 microspheres with high electrochemical performance as anode material for lithium-ion battery. Sci China Mater 60(5):427–437

    CAS  Google Scholar 

  50. Lee SH, Sridhar V, Jung JH, Karthikeyan K, Lee YS, Mukherjee R, Koratkar N, Oh IK (2013) Graphene–nanotube–iron hierarchical nanostructure as lithium ion battery anode. ACS Nano 7(5):4242–4251

    CAS  PubMed  Google Scholar 

  51. Wang F, Wang YM, Sun DM, Wang L, Yang J, Jia HP (2014) High performance Li2MnSiO4 prepared in molten KCl-NaCl for rechargeable lithium ion batteries. Electrochim Acta 119:131–137

    CAS  Google Scholar 

  52. Zhang XF, Song XX, Gao S, Xu YM, Cheng XL, Zhao H, Huo LH (2013) Facile synthesis of yolk-shell MoO2 microspheres with excellent electrochemical performance as a Li-ion battery anode. J Mater Chem A 1(23):6858–6864

    CAS  Google Scholar 

  53. He HY, Li D, Li MQ (2017) Electrochemical performance and reaction mechanism of the Li2MoO3 anode synthesized by ball milling and thermal reduction for lithium-ion batteries. Electrochim Acta 224:1–8

    CAS  Google Scholar 

  54. Yu SS, Peng C, Li ZH, Zhang LJ, Xiao QZ, Lei GT, Ding YH (2017) K-doped Li-rich molybdenum-based oxide with improved electrochemical properties for lithium-ion batteries. Arab J Sci Eng 42(10):4291–4298

    CAS  Google Scholar 

  55. Kissinger PT, Heineman WR (1983) Cyclic voltammetry. J Chem Educ 60(9):702–706

    CAS  Google Scholar 

  56. Nie Y, Xiao W, Miao C, Xu MB, Wang CJ (2020) Effect of calcining oxygen pressure gradient on properties of LiNi0.8Co0.15Al0.05O2 cathode materials for lithium ion batteries. Electrochim Acta 334:135654

    CAS  Google Scholar 

  57. Kou ZY, Miao C, Mei P, Zhang Y, Yan XM, Jiang Y, Xiao W (2020) Enhancing the cycling stability of all-solid-state lithium-ion batteries assembled with Li1.3Al0.3Ti1.7(PO4)3 solid electrolytes prepared from precursor solutions with appropriate pH values. Ceram Int 46(7):9629–9636

    CAS  Google Scholar 

  58. Fang R, Miao C, Mou HY, Xiao W (2020) Facile synthesis of Si@TiO2@rGO composite with sandwich-like nanostructure as superior performance anodes for lithium ion batteries. J Alloys Compd 818:152884

    CAS  Google Scholar 

  59. Jafta CJ, Ozoemena KI, Mathe MK, Roos WD (2012) Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li [Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery. Electrochim Acta 85:411–422

    CAS  Google Scholar 

  60. Li R, Xiao W, Miao C, Fang R, Wang ZY, Zhang MQ (2019) Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int 45(10):13530–13535

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (nos. 21773060 and 51774002), Fundamental Research Funds for the Central Universities (no. N182304014), Natural Science Foundation of Heilongjiang Province (E2016056), Youth Innovation Team Project of Science and technology of Heilongjiang University (2018-KYYWF-1593), and Young Scholar Project of the Long Jiang Scholars Program (Q201818).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Tao Yu, Ying Xie or Ting-Feng Yi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, GC., Yu, HT., Guo, CF. et al. Li2MoO3 microspheres with excellent electrochemical performances as cathode material for lithium-ion battery. Ionics 26, 4401–4411 (2020). https://doi.org/10.1007/s11581-020-03586-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03586-6

Keywords

Navigation