Skip to main content

High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs


A novel double dysprosium- and tantalum-doped bismuth oxide electrolyte synthesized by solid-state reaction for low-temperature solid oxide fuel cells (LT-SOFCs) is here reported. The phase structures at room temperature were defined by X-ray powder diffraction (XRD). A stable δ-Bi2O3 phase was obtained by co-doping Bi2O3 with Dy2O3 and Ta2O5 in specific contents. The effect of the co-dopant total content (5–15 mol%) on the ionic conductivity was measured as a function of temperature (300 to 700 °C). Results revealed that the (Dy2O3)13(Ta2O5)2(Bi2O3)85 system showed the highest ionic conductivity as 0.08 S cm−1 at 500 °C, which is three times higher than the binary system reported in the literature (E2O3)20(Bi2O3)80 (20ESB) and in the same range as the ternary system with the highest conductivity reported so far (Dy2O3)8(W2O3)4(Bi2O3)88 (8D4WSB). The lowest activation energy for our system was 0.20 eV at temperatures higher than 550 °C.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Harwig HA, Gerards AG (1978) Electrical properties of the α, β, γ, and δ phases of bismuth sesquioxide. J Solid State Chem 26(3):265–274.

    Article  CAS  Google Scholar 

  2. Zhao Y, Xia C, Jia L, Wang Z, Li H, Yu J, Li Y (2013) Recent progress on solid oxide fuel cell: lowering temperature and utilizing non-hydrogen fuels. Int J Hydrog Energy 38(36):16498–16517.

    Article  CAS  Google Scholar 

  3. Punn R, Feteira AM, Sinclair DC, Greaves C (2006) Enhanced oxide ion conductivity in stabilized δ-Bi2O3. J Am Chem Soc 128(48):15386–15387.

    Article  CAS  PubMed  Google Scholar 

  4. Shuk P, Wiemhöfer HD, Guth U, Göpel W, Greenblatt M (1996) Oxide ion conducting solid electrolytes based on Bi2O3. Solid State Ionics 89(3):179–196.

    Article  CAS  Google Scholar 

  5. Boyapati S, Wachsman ED, Jiang N (2001) Effect of oxygen sublattice ordering on interstitial transport mechanism and conductivity activation energies in phase-stabilized cubic bismuth oxides. Solid State Ionics 140(1):149–160.

    Article  CAS  Google Scholar 

  6. Li R, Zhen Q, Drache M, Rubbens A, Estournes C, Vannier R-N (2011) Synthesis and ion conductivity of (Bi2O3)0.75(Dy2O3)0.25 ceramics with grain sizes from the nano to the micro scale. Solid State Ionics 198(1):6–15.

    Article  CAS  Google Scholar 

  7. Cucka P, Barrett CS (1962) The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallogr 15(9):865–872.

    Article  CAS  Google Scholar 

  8. Verkerk MJ, Keizer K, Burggraaf AJ (1980) High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system. J Appl Electrochem 10(1):81–90.

    Article  CAS  Google Scholar 

  9. Kant R, Singh K, Pandey OP (2008) Synthesis and characterization of bismuth vanadate electrolyte material with aluminium doping for SOFC application. Int J Hydrog Energy 33(1):455–462.

    Article  CAS  Google Scholar 

  10. Verkerk M, Burggraaf A (1981) High oxygen ion conduction in sintered oxides of the Bi2 O 3-Dy2 O 3 system. J Electrochem Soc 128(1):75–82

    Article  CAS  Google Scholar 

  11. Takashi S, Rokuro M (1999) Crystal structure and ionic conductivity in Bi 2 O 3 -Rich Bi 2 O 3 –Ta 2 O 5 sintered oxides. Jpn J Appl Phys 38(8R):4838

    Google Scholar 

  12. Tan MY, Tan KB, Zainal Z, Khaw CC, Chen SK (2012) Subsolidus formation and impedance spectroscopy studies of materials in the (Bi2O3)1−x (Y2O3)x binary system. Ceram Int 38(4):3403–3409.

    Article  CAS  Google Scholar 

  13. Polat Y, Dağdemir Y, Arı M (2016) Structural, thermal, electrical and morphological characterization of (Bi2O3)1−x−y(Sm2O3)x(Yb2O3)y nanostructures prepared by solid state synthesis. Curr Appl Phys 16(12):1588–1596.

    Article  Google Scholar 

  14. Ermiş İ, Shaikh SPS (2018) Study of crystallographic, thermal and electrical properties of (Bi2O3)1-x-y(Tb4O7)x(Gd2O3)y electrolyte for SOFC application. Ceram Int 44(15):18776–18782.

    Article  CAS  Google Scholar 

  15. Chou T, Liu L-D, Wei W-CJ (2011) Phase stability and electric conductivity of Er2O3–Nb2O5 co-doped Bi2O3 electrolyte. J Eur Ceram Soc 31(16):3087–3094.

    Article  CAS  Google Scholar 

  16. Bandyopadhyay S, Dutta A (2018) A structural insight into the electrical properties of Dy-Ho co-doped phase stabilized bismuth oxide based electrolytes. J Electroanal Chem 817:55–64.

    Article  CAS  Google Scholar 

  17. Jung DW, Lee KT, Wachsman ED (2016) Dysprosium and gadolinium double doped bismuth oxide electrolytes for low temperature solid oxide fuel cells. J Electrochem Soc 163(5):F411–F415.

    Article  CAS  Google Scholar 

  18. Ermiş İ, Arı M, Acer SD, Dağdemir Y (2015) Phase stability and electric conductivity of Eu 2 O 3 –Tb 4 O 7 co-doped Bi 2 O 3 electrolyte. Int J Hydrog Energy 40(30):9485–9490.

    Article  CAS  Google Scholar 

  19. Jiang N, Wachsman ED, Jung S-H (2002) A higher conductivity Bi2O3-based electrolyte. Solid State Ionics 150(3):347–353.

    Article  CAS  Google Scholar 

  20. Jung DW, Duncan KL, Wachsman ED (2010) Effect of total dopant concentration and dopant ratio on conductivity of (DyO1.5)x–(WO3)y–(BiO1.5)1−x−y. Acta Mater 58(2):355–363.

    Article  CAS  Google Scholar 

  21. Polat Y, Akalan H, Arı M (2017) Thermo-electrical and structural properties of Gd2O3 and Lu2O3 double-doped Bi2O3. Int J Hydrog Energy 42(1):614–622

    Article  CAS  Google Scholar 

  22. Jiang N, Wachsman ED (1999) Structural stability and conductivity of phase-stabilized cubic bismuth oxides. J Am Ceram Soc 82(11):3057–3064.

    Article  CAS  Google Scholar 

  23. Shannon RD, Prewitt CT (1970) Effective ionic radii and crystal chemistry. J Inorg Nucl Chem 32(5):1427–1441.

    Article  CAS  Google Scholar 

  24. Rodriguez-Carvajal J (1990) “FULLPROF” program: Rietveld pattern matching analysis of powder patterns. ILL, Grenoble

    Google Scholar 

  25. Lin SE, Wei WCJ (2011) Long-term degradation of Ta2O5-doped Bi2O3 systems. J Eur Ceram Soc 31(16):3081–3086.

    Article  CAS  Google Scholar 

  26. Yashima M, Ishimura D (2003) Crystal structure and disorder of the fast oxide-ion conductor cubic Bi2O3. Chem Phys Lett 378(3):395–399.

    Article  CAS  Google Scholar 

  27. Ersoy E, Cakar S, Yildiz E, Yilmaz S, Turkoglu O, Sarioz O (2015) Fabrication and characterization of dysprosium-doped bismuth oxide films for IT-SOFCs via slurry spin coating technique. Int J Appl Ceram Technol 12(S3):E152–E161.

    Article  CAS  Google Scholar 

  28. Wachsman ED, Lee KT (2011) Lowering the temperature of solid oxide fuel cells. Science 334(6058):935–939

    Article  CAS  Google Scholar 

  29. Azad AM, Larose S, Akbar SA (1994) Bismuth oxide-based solid electrolytes for fuel cells. J Mater Sci 29(16):4135–4151.

    Article  CAS  Google Scholar 

  30. Boyapati S, Wachsman ED, Chakoumakos BC (2001) Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides. Solid State Ionics 138(3):293–304.

    Article  CAS  Google Scholar 

  31. Verkerk MJ, van de Velde GMH, Burggraaf AJ, Helmholdt RB (1982) Structure and ionic conductivity of Bi2O3 substituted with lanthanide oxides. J Phys Chem Solids 43(12):1129–1136.

    Article  CAS  Google Scholar 

Download references


This investigation was carried out partially at CIMAV, CINVESTAV, CENAPROT, and LIDTRA laboratories. P.S. Cardenas-Terrazas thanks CONACYT for her scholarship (grant 449746). The authors also thank K. Campos-Venegas, E. Guerrero-Lestarjette, M. Roman-Aguirre, and A. M. Benitez Castro for the shared expertise and technical support.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to J. Muñoz-Saldaña or J. M. Herrera-Ramirez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardenas-Terrazas, P.S., Ayala-Ayala, M.T., Muñoz-Saldaña, J. et al. High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs. Ionics 26, 4579–4586 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: