Skip to main content

Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer

Abstract

The phase composition, electrotransport properties, and spectral characteristics of the (1 − x)CsH2PO4xButvar system (х = 0–0.2 wt%) were investigated in details. Butvar was proved to be a chemically suitable matrix for CsH2PO4 with a good adhesion to acid salt permitting the formation of flexible membrane. The chemical interaction of organic matrix with acid salt was not observed. A new method of “polymer-CsH2PO4” composites preparation through alcohol solutions of initial components was proposed. The flexible and thin (~ 200 μm) proton membranes with uniform salt distribution were obtained. Composite polymer electrolytes are characterized by high proton conductivity values (~ 5 × 10−3 S/cm) at 240 °C and are stable under conditions of high humidity (PH2O ~ 0.3 atm.).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baranov AI, Khiznichenko VP, Sandler VA, Shuvalov LA (1988) Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics 81:1147–1150

    Google Scholar 

  2. Baranov AI, Shuvalov LA, Schagina NM (1982) Superion conductivity and phase transitions in CsHSO4 and CsHSeO4 crystals. JETP Lett 36:459–462

    Google Scholar 

  3. Baranov AI (2003) Crystals with disordered hydrogen-bond networks and superprotonic conductivity. Review, Cryst. Rep. 48(6):1012–1037

  4. Taninouchi Y, Uda T, Awakura Y, Ikeda A, Haile SM (2007) Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260°C. J Mater Chem 17:3182–3189

    CAS  Article  Google Scholar 

  5. Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H (2003) Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 156:357–369

    CAS  Article  Google Scholar 

  6. Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70

    CAS  Article  Google Scholar 

  7. Nikiforov AV, Berg RW, Bjerrum NJ (2018) Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400°C. Ionics 24:2761–2782

    CAS  Article  Google Scholar 

  8. Botez CE, Martinez I, Price A, Martinez H, Leal JH (2019) Superprotonic CsH2PO4 in dry air. J Phys Chem Solids 129:324–328

    CAS  Article  Google Scholar 

  9. Martsinkevich VV, Ponomareva VG (2012) Double salts Cs1-xMxH2PO4 (M=Na, K, Rb) as proton conductors. Solid State Ionics 225:236–240

    CAS  Article  Google Scholar 

  10. Anfimova T, Jensen AH, Christensen E, Jensen JO, Bjerrum NJ, Li Q (2015) CsH2PO4/NdPO4 composites as proton conducting electrolytes for intermediate temperature fuel cells. JElectrochem Soc 162(4):F436–F441

    CAS  Article  Google Scholar 

  11. Matsui T, Kukino T, Kikuchi R, Eguchi K (2006) Intermediate-temperature fuel cell employing CsH2PO4/SiP2O7-based composite electrolytes. J Electrochem Soc 153(2):A339–A342

    CAS  Article  Google Scholar 

  12. Mohammad N, Mohamad AB, Kadhum AAH, Loh KS (2017) Effect of silica on the thermal behavior and ionic conductivity of mixed salt solid acid composites. J Alloys Compd 690:896–902

    CAS  Article  Google Scholar 

  13. Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39

    CAS  Article  Google Scholar 

  14. Boysen DA, Chisholm CRI, Haile SM, Narayanan SR (2000) Polymer solid acid composite membranes for fuel-cell applications. J Electrochem Soc 147:3610–3613

    CAS  Article  Google Scholar 

  15. Uda T, Haile SM (2005) Thin-membrane solid-acid fuel cell. Electrochem Solid-State Lett 8(5):A245–A246

    CAS  Article  Google Scholar 

  16. Aili D, Gao Y, Han J, Li Q (2017) Acid-base chemistry and proton conductivity of CsHSO4, CsH2PO4 and their mixtures with N-heterocycles. Solid State Ionics 306:13–19

    CAS  Article  Google Scholar 

  17. Oh S-Y, Kawamura G, Muto H, Matsuda A (2012) Mechanochemical synthesis of proton conductive composites derived from cesium dihydrogen phosphate and guanine. Solid State Ionics 225:223–227

    CAS  Article  Google Scholar 

  18. Jensen H (2014) Preparation and characterization of components for intermediate temperature fuel cells and electrolyzers, PhD Thesis, Denmark

  19. Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2015) CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells. Electrochim Acta 169:219–226

    CAS  Article  Google Scholar 

  20. Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2014) CsH2PO4/polyvinylidene flouride composite electrolytes for intermediate temperature fuel cells. J Electrochem Soc 161:F451–F457

    CAS  Article  Google Scholar 

  21. Xie Q, Li Y, Hu J, Chen X, Li H (2015) A CsH2PO4-based composite electrolyte membrane for intermediate temperature fuel cells. J of Membrane Science 489:98–105

    CAS  Article  Google Scholar 

  22. Bagryantseva IN, Ponomareva VG, Lazareva NP (2019) Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Solid State Ionics 329:61–66

    CAS  Article  Google Scholar 

  23. Ahn YS, Mangani IR, Park CW, Kim J (2006) Study on the morphology of CsH2PO4 using the mixture of methanol and polyols. J Power Sources 163:107–112

    CAS  Article  Google Scholar 

  24. Lohmann-Richters FP, Odenwald C, Kickelbick G, Abel B, Varga Á (2018) Facile and scalable synthesis of sub-micrometer electrolyte particles for solid acid fuel cells. RSC Adv 8:21806–21815

    CAS  Article  Google Scholar 

  25. Hosseini S, Daud WRW, Badiei M, Kadhum AAH, Mohammad AB (2011) Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bull Mater Sci 34:759–765

    CAS  Article  Google Scholar 

  26. Varga A, Brunelli NA, Louie MW, Giapis KP, Haile SM (2010) Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J Mater Chem 20:6309–6315

    CAS  Article  Google Scholar 

  27. Suryaprakash RC, Lohmann FP, Wagner M, Abel B, Varga A (2014) Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4. Pt-thin-film composite electrodes for solid acid fuel cells RSC Adv 4:60429–60436

    CAS  Google Scholar 

  28. Hallensleben ML, Fuss R, Mummy F (2000) Polyvinyl compounds, others. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley Online Library

    Book  Google Scholar 

  29. Chaudhry AU, Mittal V, Mishra B (2015) Inhibition and promotion of electrochemical reactions by graphene in organic coatings. RSC Adv 5:80365–80368

    CAS  Article  Google Scholar 

  30. Dang D, Zhao B, Chen D, Yoo S, Lai SY, Doyle B, Dai S, Chen Y, Qu C, Zhang L, Liao S, Liu M (2017) A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells. J. Power Sources 359:1–6

    CAS  Article  Google Scholar 

  31. Matsunaga H, Itoh K, Nakamura E (1980) X-ray structural study of CDP at room temperature. Journal of Physical Society of Japan 48(6):2011–2014

    CAS  Article  Google Scholar 

  32. Otomo J, Minagawa N, Wen C, Eguchi K, Takahashi H (2003) Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 156:357–369

    CAS  Article  Google Scholar 

  33. Marchon B, Novak A (1983) Vibrational study of CsH2PO4 and CsD2PO4 single crystals. J Chem Phys 78:2105–2120

    CAS  Article  Google Scholar 

  34. Howie FMP (2014) Materials used for conserving fossil specimens since 1930: a review, stud. Conserv. 29(1):92–97

    Google Scholar 

Download references

Acknowledgements

This work was supported by Russian Foundation for Basic Research (RFBR) grant no. 18-08-01279 and the state assignment to ISSCM SB RAS(project no. АААА-А17-117030310281-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina G. Ponomareva.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bagryantseva, I.N., Gaydamaka, A.A. & Ponomareva, V.G. Intermediate temperature proton electrolytes based on cesium dihydrogen phosphate and Butvar polymer. Ionics 26, 1813–1818 (2020). https://doi.org/10.1007/s11581-020-03505-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03505-9

Keywords

  • Proton conductivity
  • Acid salt
  • Cesium dihydrogen phosphate
  • Polyvinyl butyral
  • Composite polymer electrolyte