Baranov AI, Khiznichenko VP, Sandler VA, Shuvalov LA (1988) Frequency dielectric dispersion in the ferroelectric and superionic phases of CsH2PO4. Ferroelectrics 81:1147–1150
Google Scholar
Baranov AI, Shuvalov LA, Schagina NM (1982) Superion conductivity and phase transitions in CsHSO4 and CsHSeO4 crystals. JETP Lett 36:459–462
Google Scholar
Baranov AI (2003) Crystals with disordered hydrogen-bond networks and superprotonic conductivity. Review, Cryst. Rep. 48(6):1012–1037
Taninouchi Y, Uda T, Awakura Y, Ikeda A, Haile SM (2007) Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260°C. J Mater Chem 17:3182–3189
CAS
Article
Google Scholar
Otomo J, Minagawa N, Wen CJ, Eguchi K, Takahashi H (2003) Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 156:357–369
CAS
Article
Google Scholar
Boysen DA, Uda T, Chisholm CRI, Haile SM (2004) High-performance solid acid fuel cells through humidity stabilization. Science 303:68–70
CAS
Article
Google Scholar
Nikiforov AV, Berg RW, Bjerrum NJ (2018) Vapor pressure and specific electrical conductivity in the solid and molten H2O-CsH2PO4-CsPO3 system—a novel electrolyte for water electrolysis at ~ 225–400°C. Ionics 24:2761–2782
CAS
Article
Google Scholar
Botez CE, Martinez I, Price A, Martinez H, Leal JH (2019) Superprotonic CsH2PO4 in dry air. J Phys Chem Solids 129:324–328
CAS
Article
Google Scholar
Martsinkevich VV, Ponomareva VG (2012) Double salts Cs1-xMxH2PO4 (M=Na, K, Rb) as proton conductors. Solid State Ionics 225:236–240
CAS
Article
Google Scholar
Anfimova T, Jensen AH, Christensen E, Jensen JO, Bjerrum NJ, Li Q (2015) CsH2PO4/NdPO4 composites as proton conducting electrolytes for intermediate temperature fuel cells. JElectrochem Soc 162(4):F436–F441
CAS
Article
Google Scholar
Matsui T, Kukino T, Kikuchi R, Eguchi K (2006) Intermediate-temperature fuel cell employing CsH2PO4/SiP2O7-based composite electrolytes. J Electrochem Soc 153(2):A339–A342
CAS
Article
Google Scholar
Mohammad N, Mohamad AB, Kadhum AAH, Loh KS (2017) Effect of silica on the thermal behavior and ionic conductivity of mixed salt solid acid composites. J Alloys Compd 690:896–902
CAS
Article
Google Scholar
Haile SM, Chisholm CRI, Sasaki K, Boysen DA, Uda T (2007) Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discuss 134:17–39
CAS
Article
Google Scholar
Boysen DA, Chisholm CRI, Haile SM, Narayanan SR (2000) Polymer solid acid composite membranes for fuel-cell applications. J Electrochem Soc 147:3610–3613
CAS
Article
Google Scholar
Uda T, Haile SM (2005) Thin-membrane solid-acid fuel cell. Electrochem Solid-State Lett 8(5):A245–A246
CAS
Article
Google Scholar
Aili D, Gao Y, Han J, Li Q (2017) Acid-base chemistry and proton conductivity of CsHSO4, CsH2PO4 and their mixtures with N-heterocycles. Solid State Ionics 306:13–19
CAS
Article
Google Scholar
Oh S-Y, Kawamura G, Muto H, Matsuda A (2012) Mechanochemical synthesis of proton conductive composites derived from cesium dihydrogen phosphate and guanine. Solid State Ionics 225:223–227
CAS
Article
Google Scholar
Jensen H (2014) Preparation and characterization of components for intermediate temperature fuel cells and electrolyzers, PhD Thesis, Denmark
Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2015) CsH2PO4/epoxy composite electrolytes for intermediate temperature fuel cells. Electrochim Acta 169:219–226
CAS
Article
Google Scholar
Qing G, Kikuchi R, Takagaki A, Sugawara T, Oyama ST (2014) CsH2PO4/polyvinylidene flouride composite electrolytes for intermediate temperature fuel cells. J Electrochem Soc 161:F451–F457
CAS
Article
Google Scholar
Xie Q, Li Y, Hu J, Chen X, Li H (2015) A CsH2PO4-based composite electrolyte membrane for intermediate temperature fuel cells. J of Membrane Science 489:98–105
CAS
Article
Google Scholar
Bagryantseva IN, Ponomareva VG, Lazareva NP (2019) Proton-conductive membranes based on CsH2PO4 and ultra-dispersed polytetrafluoroethylene. Solid State Ionics 329:61–66
CAS
Article
Google Scholar
Ahn YS, Mangani IR, Park CW, Kim J (2006) Study on the morphology of CsH2PO4 using the mixture of methanol and polyols. J Power Sources 163:107–112
CAS
Article
Google Scholar
Lohmann-Richters FP, Odenwald C, Kickelbick G, Abel B, Varga Á (2018) Facile and scalable synthesis of sub-micrometer electrolyte particles for solid acid fuel cells. RSC Adv 8:21806–21815
CAS
Article
Google Scholar
Hosseini S, Daud WRW, Badiei M, Kadhum AAH, Mohammad AB (2011) Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bull Mater Sci 34:759–765
CAS
Article
Google Scholar
Varga A, Brunelli NA, Louie MW, Giapis KP, Haile SM (2010) Composite nanostructured solid-acid fuel-cell electrodes via electrospray deposition. J Mater Chem 20:6309–6315
CAS
Article
Google Scholar
Suryaprakash RC, Lohmann FP, Wagner M, Abel B, Varga A (2014) Spray drying as a novel and scalable fabrication method for nanostructured CsH2PO4. Pt-thin-film composite electrodes for solid acid fuel cells RSC Adv 4:60429–60436
CAS
Google Scholar
Hallensleben ML, Fuss R, Mummy F (2000) Polyvinyl compounds, others. Ullmann’s Encyclopedia of Industrial Chemistry, Wiley Online Library
Book
Google Scholar
Chaudhry AU, Mittal V, Mishra B (2015) Inhibition and promotion of electrochemical reactions by graphene in organic coatings. RSC Adv 5:80365–80368
CAS
Article
Google Scholar
Dang D, Zhao B, Chen D, Yoo S, Lai SY, Doyle B, Dai S, Chen Y, Qu C, Zhang L, Liao S, Liu M (2017) A durable polyvinyl butyral-CsH2PO4 composite electrolyte for solid acid fuel cells. J. Power Sources 359:1–6
CAS
Article
Google Scholar
Matsunaga H, Itoh K, Nakamura E (1980) X-ray structural study of CDP at room temperature. Journal of Physical Society of Japan 48(6):2011–2014
CAS
Article
Google Scholar
Otomo J, Minagawa N, Wen C, Eguchi K, Takahashi H (2003) Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics 156:357–369
CAS
Article
Google Scholar
Marchon B, Novak A (1983) Vibrational study of CsH2PO4 and CsD2PO4 single crystals. J Chem Phys 78:2105–2120
CAS
Article
Google Scholar
Howie FMP (2014) Materials used for conserving fossil specimens since 1930: a review, stud. Conserv. 29(1):92–97
Google Scholar