Skip to main content

Advertisement

Log in

In-situ constructing of mesoporous Li4Ti5O12@rGO hybrid spheres as anode materials for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The Li4Ti5O12@rGO (LTO@rGO) mesoporous hybrid spheres have been successfully synthesized by an in-situ conversion route in aqueous LiOH solution using TiO2 spheres as precursor, which was followed by annealing process in Ar atmosphere. The LTO@rGO composites possess a uniform mesoporous spherical structure with diameter of approximately 800 nm, which are assembled by many interconnected nanoparticles with a thin rGO conductive coating. Benefiting from the synergistic effects of the unique nanostructure hybrids, it is proved that the porous can offer large surface area which has high intrinsic interfacial reactivity with the electrolyte, extra space for the storage of Li+, and short transport distances for both e and Li+. Meanwhile, the rGO coating could enhance effectively the interfacial contact between particles and create a three-dimensional conductive network to greatly facilitate fast transport of e and Li+, which can improve the rate capacity. Compared with pure LTO, the as-prepared LTO@rGO mesoporous hybrid spheres deliver a higher reversible capacity of 260.1 mAh g−1 at 0.5 C after 500 cycles with highly stable capacity retention of even more than 100%, and the high rate discharge capacity reach 125.9 mAh g−1 at 10 C. Therefore, the LTO@rGO composites display superior high-rate property and ultralong cycling stability, which can provide a potential anode material for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang JB, Chen L, Zeng LX (2018) In-situ synthesis of WSe2/CMK-5 nanocomposite for rechargeable lithium-ion batteries with a long-term cycling stability. ACS Sustain Chem Eng 6:4688–4694

    CAS  Google Scholar 

  2. Zheng Z, Zao Y, Zhang Q (2018) Robust erythrocyte-like Fe2O3@carbon with yolk-shell structures as high-performance anode for lithium ion batteries. Chem Eng J 347:563–573

    CAS  Google Scholar 

  3. Wang S, Yang Y, Quan W, Hong Y, Zhang Z, Tang Z, Li J (2017) Ti3+-free three-phase Li4Ti5O12/TiO2 for high-rate lithium ion batteries: capacity and conductivity enhancement by phase boundaries. Nano Energy 32:294–301

    CAS  Google Scholar 

  4. Wang S, Li W, Song H (2019) Nitrogen-enriched carbon-coated flower-like bismuth sulfide architectures towards high-performance lithium-ion battery anodes. Inorg Chem Front 6

    CAS  Google Scholar 

  5. Zhang W, Xu T, Liu Z (2018) Hierarchical TiO2-x imbedded with graphene quantum dots for high-performance lithium storage. Chem Commun 54:1413–1416

    CAS  Google Scholar 

  6. Xu H, Hu X, Sun Y, Luo W, Chen C, Liu Y, Huang Y (2014) Highly porous Li4Ti5O12/C nanofibers for ultrafast electrochemical energy storage. Nano Energy 10:163–171

    CAS  Google Scholar 

  7. Xu G, Tian Y, Wei X, Yang L, Chu PK (2017) Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries. J Power Sources 337:180–188

    CAS  Google Scholar 

  8. Yi TF, Yang SY, Xie Y (2015) Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries. J Mater Chem A 3:5750–5777

    CAS  Google Scholar 

  9. Wang G, Lu C, Zhang X, Wan B, Liu H, Xia M, Gou H, Xin G, Lian J, Zhang Y (2017) Toward ultrafast lithium ion capacitors: a novel atomic layer deposition seeded preparation of Li4Ti5O12/Graphene anode. Nano Energy 36:46–57

    CAS  Google Scholar 

  10. Hwang CH, Kim HE, Nam I (2019) Polygonal multi-polymorphed Li4Ti5O12@rutile TiO2 as anodes in lithium-ion batteries. Nano Res 12

  11. Liu J, Wei AX, Chen M (2018) Rational synthesis of Li4Ti5O12/N-C nanotube arrays as advanced high-rate electrodes for lithium-ion batteries. J Mater Chem A 6:3857–3863

    CAS  Google Scholar 

  12. Huang C, Zhao SX, Peng H (2018) Hierarchical porous Li4Ti5O12-TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications. J Mater Chem A 6:14339–14351

    CAS  Google Scholar 

  13. Yuan T, Tan ZP, Ma CR (2017) Challenges of spinel Li4Ti5O12 for lithium-ion battery industrial applications. Adv Energy Mater 1601625

  14. Repp S, Harputlu E, Gurgen S, Castellano M, Kremer N, Pompe N, Wörner J, Hoffmann A, Thomann R, Emen FM, Weber S, Ocakoglu K, Erdem E (2018) Synergetic effects of Fe3+ doped spinel Li4Ti5O12 nanoparticles on reduced graphene oxide for high surface electrode hybrid supercapacitors. Nanoscale 10:1877–1884

    CAS  PubMed  Google Scholar 

  15. Liu J, Song K, van Aken PA, Maier J, Yu Y (2014) Self-supported Li4Ti5O12-C nanotube arrays as high-rate and long-life anode materials for flexible Li-ion batteries. Nano Lett 14:2597–2603

    CAS  PubMed  Google Scholar 

  16. Liu JL, Wang YH, Ma JZ, Peng Y, Wang AQ (2019) A review on bidi-rectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloys Compd 783:898–918

    CAS  Google Scholar 

  17. Gayathri S, Arunkumar P, Kim EJ (2019) Mesoporous nitrogen-doped carbon@graphene nanosheets as ultrastable anode for lithium-ion batteries e melamine as surface modifier than nitrogen source. Electrochim Acta 318:290–301

    CAS  Google Scholar 

  18. Liu JL, Shao JZ, Wang YH, Li JQ, Liu H, Wang AQ, Hui AP, Chen SW (2019) Antimicrobial activity of zinc oide-graphene Quantum dot nanocomposites: enhanced adsorption on bacterial cells by cati-onic capping polymers. ACS Sustain Chem Eng 7:16264–16273

    CAS  Google Scholar 

  19. Zhang P, Ru Q, Gao YQ (2019) Porous nano-silicon/TiO2/rGO@carbon architecture with 1000-cycling lifespan as superior durable anodes for lithium-ion batteries. Ionics 25:4675–4684

    CAS  Google Scholar 

  20. Dai XH, Fan HX, Zhang JJ (2019) Sewage sludge-derived porous hollow carbon nanospheres as highperformance anode material for lithium ion batteries. Electrochimica Acta 319:277–285

    CAS  Google Scholar 

  21. Kim KT, Yu CY, Chong SY, Kim SJ, Sun YK, Myung ST (2015) Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries. Nano Energy 12:725–734

    CAS  Google Scholar 

  22. Wu CH, Pu NW, Liu YM (2017) Improving rate capability of lithium-ion batteries using holey graphene as the anode material. J Taiwan Inst Chem Eng 80:511–517

    CAS  Google Scholar 

  23. Zhang J, Cai Y, Wu J, Yao J (2015) Graphene oxide-confined synthesis of Li4Ti5O12 microspheres as high-performance anodes for lithium ion batteries. Electrochim Acta 165:422–429

    CAS  Google Scholar 

  24. Chen C, Xu H, Zhou T, Guo Z, Chen L, Yan M, Mai L, Hu P, Cheng S, Huang Y (2016) Integrated intercalation-based and interfacial sodium storage in graphene-wrapped porous Li4Ti5O12 nanofibers composite aerogel. Adv Energy Mater 6:1600322

    Google Scholar 

  25. Yuan W, Wang B, Wu H (2018) A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries. J Power Sources 379:10–19

    CAS  Google Scholar 

  26. Han S, Wu D, Li S, Zhang F, Feng X (2013) Graphene: a two-dimensional platform for lithium storage. Small 9:1173–1187

    CAS  PubMed  Google Scholar 

  27. Yang Y, Qiao B, Yang X, Fang L, Pan C, Song W, Hou H, Ji X (2014) Lithium titanate tailored by cathodically induced graphene for an ultrafast lithium ion battery. Adv Funct Mater 24:4349–4356

    CAS  Google Scholar 

  28. Sun L, Xiong W, Mi H, Li Y, Zhuo H, Zhang Q, He C, Liu J (2016) In situ coating of graphene-like sheets on Li4Ti5O12 particles for lithium-ion batteries. Electrochim Acta 230:508–513

    Google Scholar 

  29. Shen L, Yuan C, Luo H (2010) Facile synthesis of hierarchically porous Li4Ti5O12 microspheres for high rate lithium ion batteries. J Mater Chem 20:6998–7004

    CAS  Google Scholar 

  30. Zhao X, Liu H, Feng Y, Pang L, Ding M, Deng L, Zhu J (2018) In-situ constructing of hierarchical Li4Ti5O12-TiO2 microspheres assembled by nanosheets for lithium-ion batteries. Mater Lett 231:130–133

    CAS  Google Scholar 

  31. Liu H, Guo K, Duan C, Dong X, Gao J (2017) Hollow TiO2 modified reduced graphene oxide microspheres encapsulating hemoglobin for a mediator-free biosensor. Biosens Bioelectron 87:473–479

    CAS  PubMed  Google Scholar 

  32. Wang C, Wang S, Tang L, He YB, Gan L, Li J, Du H, Li B, Lin Z, Kang F (2016) A robust strategy for crafting monodisperse Li4Ti5O12 nanospheres as superior rate anode for lithium ion batteries. Nano Energy 21:133–144

    CAS  Google Scholar 

  33. Liu HP, Wen GW, Bi SF, Wang CY, Hao JM, Gao P (2016) High rate cycling performance of nanosized Li4Ti5O12/graphene composites for lithium ion batteries. Electrochim Acta 192:38–44

    CAS  Google Scholar 

  34. Cao N, Wen L, Song Z, Meng W, Qin X (2016) Li4Ti5O12/reduced graphene oxide composite as a high-rate anode material for lithium ion batteries. Electrochim Acta 209:235–243

    CAS  Google Scholar 

  35. Liu H, Dong X, Wang X, Sun C, Li J, Zhu Z (2013) A green and direct synthesis of graphene oxide encapsulated TiO2 core/shell structures with enhanced photoactivity. Chem Eng J 230:279–285

    CAS  Google Scholar 

  36. Chen C, Huang Y, Zhang H, Wang X, Li G, Wang Y, Jiao L, Yuan H (2015) Small amount of reduce graphene oxide modified Li4Ti5O12 nanoparticles for ultrafast high-power lithium ion battery. J Power Sources 278:693–702

    CAS  Google Scholar 

  37. Yang F, Zhang Z, Han Y, Du K, Lai Y, Li J (2015) TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries. Electrochim Acta 178:871–876

    CAS  Google Scholar 

  38. Wang J, Shen L, Li H, Ding B, Nie P, Dou H, Zhang X (2014) Mesoporous Li4Ti5O12/carbon nanofibers for high-rate lithium-ion batteries. J Alloys Compd 587:171–176

    CAS  Google Scholar 

  39. He Y, Muhetaer A, Li J (2017) Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv Energy Mater 7:1700950

    Google Scholar 

  40. Sun ZH, Wu XL, Peng ZQ, Wang JW, Gan SY, Zhang YW, Han DX, Niu L (2019) Compactly coupled nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres as polysulfide reservoirs for high-performance lithium-sulfur chemistry. Small 1902491

  41. Ren M, Xu H, Li F, Liu W, Gao C, Su L, Li G, Hei J (2017) Sugarapple-like N-doped TiO2 @carbon core-shell spheres as high-rate and long-life anode materials for lithium-ion batteries. J Power Sources 353:237–244

    CAS  Google Scholar 

  42. Tang YK, Liu L, Zhao HY (2018) Rational design of hybrid porous nanotubes with robust structure of ultrafine Li4Ti5O12 nanoparticles embedded in bamboo-like CNTs for superior lithium ion storage. J Mater Chem A 6:3342–3349

    CAS  Google Scholar 

  43. Li JH, Han SB, Zhang CY, Wei W, Gu M, Meng LJ (2019) High-performance and reactivation characteristics of high-quality, graphene-supported SnS2 heterojunctions for a lithium-ion battery anode. ACS Appl Mater Interfaces 11:22314–22322

    CAS  PubMed  Google Scholar 

  44. He Y, Muhetaer A, Li J, Wang F, Liu C, Li Q, Xu D (2017) Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long-cycle life Li-ion batteries. Adv Energy Mater 7:1700950

    Google Scholar 

  45. Zhang K, Park M, Zhou L et al (2016) Urchin-like CoSe2 as a high-performance anode material for sodium-ion batteries. Adv Funct Mater 26:6728–6735

    CAS  Google Scholar 

  46. Lu S, Zhu T, Wu H et al (2019) Construction of ultrafine ZnSe nanoparticles on/in amorphous carbon hollow nanospheres with high-power-density sodium storage. Nano Energy 59:762–772

    CAS  Google Scholar 

  47. Lesel B, Ko J, Dunn B, Tolbert S (2016) Mesoporous LixMn2O4 thin film cathodes for lithium-ion pseudocapacitors. ACS Nano 10:7572–7581

    CAS  PubMed  Google Scholar 

  48. Chen C, Wen Y, Hu X, Ji X, Yan M, Mai L, Hu P, Shan B, Huang Y (2015) Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. Nat Commun 6:6929

    CAS  PubMed  Google Scholar 

  49. Yang X, Zheng A, Wang X, Niu B (2016) Graphene nanosheet and carbon layer co-decorated Li4Ti5O12 as high-performance anode material for rechargeable lithium-ion batteries. Ceram Int 43:3252–3258

    Google Scholar 

Download references

Acknowledgments

This study received financial support from the National Science Foundation of China (51272147), the Natural Science Foundation of Shaanxi Province (2015JM5208), and the Graduate Innovation Found of Shaanxi University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Liu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 540 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Liu, H. & Zhao, X. In-situ constructing of mesoporous Li4Ti5O12@rGO hybrid spheres as anode materials for lithium-ion batteries. Ionics 26, 2791–2801 (2020). https://doi.org/10.1007/s11581-020-03466-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03466-z

Keywords

Navigation