Skip to main content

Advertisement

Log in

Atomic layer deposition of Al2O3 on organic potassium terephthalate with enhanced K-storage behavior for K-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Organic carbonyl compounds were regarded as one of the promising anode materials in potassium-ion (K-ion) batteries, mainly due to their environmental friendliness, flexibility as well as low cost. Nevertheless, the low initial coulombic efficiency and the side reactions with high-active electrolyte restrict its further application. Herein, atomic layer deposition (ALD) methodology was initially introduced in K-ion batteries by coating aluminum oxide (Al2O3) layer on organic potassium terephthalate (K2TP) anode materials. K2TP electrode materials were obtained by a simple ball-milling methodology, and then, they were coated by Al2O3 layer with different thicknesses. The results suggested that suitable coating layer can stabilize the electrode materials and depress the side reactions. The initial coulombic efficiency (CE) could be enhanced, and the as-prepared sample can keep 110 mAh g−1 over 100 cycles at the current density of 220 mA g−1, with improved fast charge–discharge properties. These findings are of significance for surface modification in large-scale energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    Article  CAS  Google Scholar 

  3. Miao F, Miao R, Wu W, Cong W, Zang Y, Tao B (2018) A stable hybrid anode of graphene/silicon nanowires array for high performance lithium-ion battery. Mater Lett 228:262–265

    Article  CAS  Google Scholar 

  4. Wang Y, Deng Q, Xue W, Jian Z, Zhao R, Wang J (2018) ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. J Mater Sci 53(9):6785–6795

    Article  CAS  Google Scholar 

  5. Miao F, Li Q, Tao B, Chu PK (2014) Fabrication of highly ordered porous nickel oxide anode materials and their electrochemical characteristics in lithium storage. J Alloys Compounds 594:65–69

    Article  CAS  Google Scholar 

  6. Zhao Q, Wang J, Lu Y, Li Y, Liang G, Chen J (2016) Oxocarbon salts for fast rechargeable batteries. Angew Chemie 55(40):12528–12532

    Article  CAS  Google Scholar 

  7. Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R (2015) Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta 166:32–39

    Article  CAS  Google Scholar 

  8. Eftekhari A, Jian Z, Ji X (2016) Potassium secondary batteries. Acs Appl Mater Inter 9:4404–4419

    Article  Google Scholar 

  9. Hu Y, Tang W, Yu Q, Yang C, Fan C (2019) In situ electrochemical synthesis of novel lithium-rich organic cathodes for all-organic Li-ion full batteries. Acs Appl Mater Inter 11(36):32987–32993

    Article  CAS  Google Scholar 

  10. Wu X, Leonard DP, Ji X (2017) Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater 29(12):5031–5042

    Article  CAS  Google Scholar 

  11. Li D, Tang W, Wang C, Fan C (2019) A polyanionic organic cathode for highly efficient K-ion full batteries. Electrochem Commun 105

  12. Zhang W, Mao J, Li S, Chen Z, Guo Z (2017) Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc 139(9):3316–3319

    Article  CAS  Google Scholar 

  13. Cao B, Zhang Q, Liu H, Xu B, Zhang S, Zhou T, Mao J, Pang WK, Guo Z, Li A, Zhou J, Chen X, Song H (2018) Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater 8(25):1801149

    Article  Google Scholar 

  14. Zhang Q, Wang Z, Zhang S, Zhou T, Mao J, Guo Z (2018) Cathode materials for potassium-ion batteries: current status and perspective. Electrochem Energy Rev 1(4):625–658

    Article  CAS  Google Scholar 

  15. Miao F, Miao R, Yu Z, Shi C, Zhu L, Chu P (2019) A stacked structure comprising 3-dimensional nitrogen-doped graphene, silicon microchannel plate, and TiO2 for high-performance anode in lithium-ion battery. Mater Express 9(6):629–634

    Article  CAS  Google Scholar 

  16. Kim H, Kim JC, Bianchini M, Seo D-H, Rodriguez-Garcia J, Ceder G (2018) Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater 8(9):1702384

    Article  Google Scholar 

  17. Wang C, Tang W, Yao Z, Cao B, Fan C (2019) Potassium perylene-tetracarboxylate with two-electron redox behaviors as a highly stable organic anode for K-ion batteries. Chemical Commun 55(12):1801–1804

    Article  CAS  Google Scholar 

  18. Miao F, Cong W, Miao R, Wang N, Wu W, Zang Y, Shi C, Zhu L, Tao B, Chu PK (2019) High-performance anode materials based on 3D orderly and vertically macroporous graphene-Si framework for Li-ion batteries. Ionics

  19. Xing Z, Qi Y, Jian Z, Ji X (2017) Polynanocrystalline graphite: a new carbon anode with superior cycling performance for K-ion batteries. Acs Appl Mater Inter 9(5):4343–4351

    Article  CAS  Google Scholar 

  20. Luo W, Wan J, Ozdemir B, Bao W, Chen Y, Dai J, Lin H, Xu Y, Gu F, Barone V, Hu L (2015) Potassium ion batteries with graphitic materials. Nano Lett 15(11):7671–7677

    Article  CAS  Google Scholar 

  21. McCulloch WD, Ren X, Yu M, Huang Z, Wu Y (2015) Potassium-ion oxygen battery based on a high capacity antimony anode. Acs Appl Mater Inter 7(47):26158–26166

    Article  CAS  Google Scholar 

  22. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM (2016) Tin-based composite anodes for potassium-ion batteries. Chem Commun 52(59):9279–9282

    Article  CAS  Google Scholar 

  23. Zhang Q, Mao J, Pang WK, Zheng T, Sencadas V, Chen Y, Liu Y, Guo Z (2018) Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater 8(15):1703288

    Article  Google Scholar 

  24. Zhou J, Wang L, Yang M, Wu J, Chen F, Huang W, Han N, Ye H, Zhao F, Li Y, Li Y (2017) Hierarchical VS2 nanosheet assemblies: a universal host material for the reversible storage of alkali metal ions. Adv Mater 29(35):1702061

    Article  Google Scholar 

  25. Han J, Xu M, Niu Y, Li G-N, Wang M, Zhang Y, Jia M, Li CM (2016) Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. Chem Commun 52(75):11274–11276

    Article  CAS  Google Scholar 

  26. Deng Q, He S-J, Pei J, Fan C, Li C, Cao B, Lu Z-H, Li J (2017) Exploitation of redox-active 1,4-dicyanobenzene and 9,10-dicyanoanthracene as the organic electrode materials in rechargeable lithium battery. Electrochem Commun 75:29–32

    Article  CAS  Google Scholar 

  27. Deng Q, Xue J, Zou W, Wang L, Zhou A, Li J (2016) The electrochemical behaviors of Li2C8H4O6 and its corresponding organic acid C8H6O6 as anodes for Li-ion batteries. J Electroanal Chem 761:74–79

    Article  CAS  Google Scholar 

  28. Armand M, Grugeon S, Vezin H, Laruelle S, Ribière P, Poizot P, Tarascon JM (2009) Conjugated dicarboxylate anodes for Li-ion batteries. Nature Mater 8(2):120

    Article  CAS  Google Scholar 

  29. Jian Z, Liang Y, Pérez IAR, Yao Y, Ji X (2016) Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem Commun 71:5–8

    Article  CAS  Google Scholar 

  30. Fan C, Zhao M, Li C, Wang C, Cao B, Chen X, Li Y, Li J (2017) Investigating the electrochemical behavior of cobalt(II) terephthalate (CoC8H4O4) as the organic anode in K-ion battery. Electrochim Acta 253:333–338

    Article  CAS  Google Scholar 

  31. Deng Q, Pei J, Fan C, Ma J, Cao B, Li C, Jin Y, Wang L, Li J Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries. Nano Energy 33: 350–355

  32. Lei K, Li F, Mu C, Wang J, Zhao Q, Chen C, Chen J (2017) High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolyte. Energy Environ Sci 10(2):552–557

    Article  CAS  Google Scholar 

  33. Jung YS, Lu P, Cavanagh AS, Ban C, Kim G. H,Lee SH, George SM, Harris SJ, Dillon AC (2013) Unexpected improved performance of ALD coated LiCoO2/graphite Li-ion batteries. Adv Energy Mater 3 (2):213–219

  34. Aravindan V, Jinesh KB, Prabhakar RR, Kale VS, Madhavi S (2013) Atomic layer deposited (ALD) SnO2 anodes with exceptional cycleability for Li-ion batteries. Nano Energy 2(5):720–725

    Article  CAS  Google Scholar 

  35. Ban CM, Xie M, Sun X, Travis JJ, Wang GK, Sun HT, Dillon AC, Lian J, George SM (2013) Atomic layer deposition of amorphous TiO2 on graphene as an anode for Li-ion batteries. Nanotechnology 24(42):424002

    Article  Google Scholar 

  36. Luo C, Wang JJ, Fan XL, Zhu YJ, Han FD, Suo LM, Wang CS (2013) Roll-to-roll fabrication of organic nanorod electrodes for sodium ion batteries. Nano Energy 13:537–545

    Article  Google Scholar 

  37. Wang L, Wang Q, Jia W, Chen S, Gao P, Li J (2017) Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries. J Power Sources 342:175–182

    Article  CAS  Google Scholar 

  38. Zhao L, Zhao J, Hu Y-S, Li H, Zhou Z, Armand M, Chen L (2012) Disodium terephthalate (Na2C8H4O4) as high performance anode material for low-cost room-temperature sodium-ion battery. Adv Energy Mater 2(8):962–965

    Article  CAS  Google Scholar 

  39. Lakshmi V, Chen Y, Mikhaylov AA, Medvedev AG, Sultana I, Rahman MM, Lev O, Prikhodchenko PV, Glushenkov AM (2017) Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem Commun 53(59):8272–8275

    Article  CAS  Google Scholar 

  40. Bie X, Kubota K, Hosaka T, Chihara K, Komaba S (2017) A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A 5(9):4325–4330

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by China Postdoctoral Science Foundation Funded Project (Grant No.2018M633544); Natural Science Foundation of Shaanxi Province (Grant No.2019JQ-730); Postdoctoral Science Foundation of Shanxi Province of China (Grant No.2018BSHEDZZ120), and Science Foundation of Xi’an University of Technology in China (Grant No.101-451117007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qijiu Deng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Q., Tian, C. & Luo, Z. Atomic layer deposition of Al2O3 on organic potassium terephthalate with enhanced K-storage behavior for K-ion batteries. Ionics 26, 1805–1812 (2020). https://doi.org/10.1007/s11581-019-03434-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03434-2

Keywords

Navigation