Skip to main content
Log in

Three-dimensional porous carbon skeleton supporting Si nanosheets as anode for high-performance lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Si nanosheets (NSs) are synthesized by the arc-discharge plasma and successfully anchored onto the surface of porous carbon (PC) substrate via physical adhesion assisted with ultrasonic blending. The PC matrix is obtained by high-temperature calcination of the mixture of glucose and calcium carbonate, followed by acid washing for removal of the oxidization products. The contents of Si NSs loaded are fixed at Si/PC = 1:9, 3:7, and 5:5 (in mass), respectively. It is found that the anode with the optimum composition of 30 wt% Si NSs exhibits the best electrochemical performances, owing to a homogeneous dispersion of Si NSs on the PC substrate without severe aggregation, typically a stable discharge specific capacity of 1252 mAh·g−1 with the coulombic efficiency of 99.58% at the current density of 100 mA·g−1 after 100 cycles while retains the capacity of 850 mAh·g−1 even at a high current density of 1 A·g−1 after 800 cycles. In comparison with the entire Si NSs electrode, the best Si/PC composite anode shows two times higher in the capacity retention ability and the excellent rate performance, due to the electrical contribution and large specific surface/pore volume of the PC matrix, which also plays positive roles in mass infiltration of electrolyte and rapid transport/diffusion of electrons/Li+ ions inside the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang ZG, Zhang JL, Kintner-Meyer MC, Lu XC, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    CAS  PubMed  Google Scholar 

  2. Lu LG, Han XB, Li JQ, Hua JF, Ouyang MG (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    CAS  Google Scholar 

  3. Farmann A, Waag W, Marongiu A, Sauer DU (2015) Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles. J Power Sources 281:114–130

    CAS  Google Scholar 

  4. Guo LZ, He HY, Ren YR, Wang C, Li MQ (2018) Core-shell SiO@F-doped C composites with interspaces and voids as anodes for high-performance lithium-ion batteries. Chem Eng J 335:32–40

    CAS  Google Scholar 

  5. Mu TS, Zuo PJ, Lou SF, Pan QR, Li Q, Du CY, Gao YZ, Cheng XQ, Ma YL, Yin GP (2018) A two-dimensional nitrogen-rich carbon/silicon composite as high performance anode material for lithium ion batteries. Chem Eng J 341:37–46

    CAS  Google Scholar 

  6. Liu XH, Zhong L, Huang S, Mao SX, Zhu T, Huang JY (2012) Size-dependent fracture of silicon nanoparticles during Lithiation. ACS Nano 6:1522–1531

    CAS  PubMed  Google Scholar 

  7. Kim HS, Lee EJ, Sun YK (2014) Recent advances in the Si-based nanocomposite materials as high capacity anode materials for lithium ion batteries. Mater Today 17:285–297

    CAS  Google Scholar 

  8. Yi R, Gordin ML, Wang DH (2016) Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries. Nanoscale 8:1834–1848

    CAS  PubMed  Google Scholar 

  9. Wu H, Cui Y (2012) Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7:414–429

    CAS  Google Scholar 

  10. Liang K, Yang HL, Guo WX, Du JL, Tian LY, Wen XF (2018) Facile preparation of nanoscale silicon as an anode material for lithium ion batteries by a mild temperature metathesis route. J Alloys Compd 735:441–444

    CAS  Google Scholar 

  11. Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nature Nanotech 3:31–35

    Google Scholar 

  12. Liang JS, Huo FL, Zhang ZY, Yang WF, Javid M, Jung YG, Dong XL, Cao GZ (2019) Controlling the phenolic resin-based amorphous carbon content for enhancing cycling stability of Si nanosheets@C anodes for lithium-ion batteries. Appl Surf Sci 476:1000–1007

    CAS  Google Scholar 

  13. Huang T, Sun DY, Yang WX, Wang HL, Wu Q, Xiao RS (2018) Binder-free anode with porous Si/cu architecture for lithium-ion batteries. Scr Mater 146:304–307

    CAS  Google Scholar 

  14. Chen HD, He SG, Hou XH, Wang SF, Chen FM, Qin HQ, Xia YC, Zhou GF (2019) Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochim Acta 312:242–250

    CAS  Google Scholar 

  15. Qin JG, Wu MQ, Feng TT, Chen C, Tu CY, Li XH, Duan C, Xia DW, Wang DX (2017) High rate capability and long cycling life of graphene-coated silicon composite anodes for lithium ion batteries. Electrochim Acta 256:259–266

    CAS  Google Scholar 

  16. Chen HD, Wang SF, Liu XJ, Hou XH, Chen FM, Pan H, Qin HQ, Lam KH, Xia YC, Zhou GF (2018) Double-coated Si-based composite composed with carbon layer and graphene sheets with void spaces for lithium-ion batteries. Electrochim Acta 288:134–143

    CAS  Google Scholar 

  17. Chen HD, Shen KX, Hou XH, Zhang GZ, Wang SF, Chen FM, Fu LJ, Qin HQ, Xia YC, Zhou GF (2019) Si-based anode with hierarchical protective function and hollow ring-like carbon matrix for high performance lithium ion batteries. Appl Surf Sci 470:496–506

    CAS  Google Scholar 

  18. Zhuang XY, Zhang Y, He LX, Zhu YF, Tian QF, Guo XL, Chen J, Li LQ, Wang Q, Song GZ, Yan XX (2017) Scalable synthesis of nano-Si embedded in porous C and its enhanced performance as anode of Li-ion batteries. Electrochim Acta 249:166–172

    CAS  Google Scholar 

  19. Liang GM, Qin XY, Zou JS, Luo LY, Wang YZ, Wu MY, Zhu H, Chen GH, Kang FY, Li BH (2018) Electrosprayed silicon-embedded porous carbon microspheres as lithium-ion battery anodes with exceptional rate capacities. Carbon 127:424–431

    CAS  Google Scholar 

  20. Shen T, Xia XH, Xie D, Yao ZJ, Zhong Y, Zhan JY, Wang DH, Wu JB, Wang XL, Tu JP (2017) Encapsulating silicon nanoparticles into mesoporous carbon forming pomegranate structured microspheres as a high-performance anode for lithium ion batteries. J Mater Chem A 5:11197–11203

    CAS  Google Scholar 

  21. Chen HD, Hou XH, Chen FM, Wang SF, Wu B, Ru Q, Qin HQ, Xia YC (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon 130:433–440

    CAS  Google Scholar 

  22. Yu XH, Xue FH, Huang H, Liu CJ, Yu JY, Sun YJ, Dong XL, Cao GZ, Jung YG (2014) Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries. Nanoscale 6:6860–6865

    CAS  PubMed  Google Scholar 

  23. Yu JY, Gao J, Xue FH, Yu XH, Yu HT, Dong XL, Huang H, Ding A, Quan X, GZ GZC (2015) Formation mechanism and optical characterization of polymorphic silicon nanostructures by DC arc-discharge. RSC Adv 5:68714–68721

    CAS  Google Scholar 

  24. Javed M, Saqib ANS, Rehman A, Ali B, Faizan M, Anang DA, Iqbal Z, Abbas SM (2019) Carbon quantum dots from glucose oxidation as a highly competent anode material for lithium and sodium-ion batteries. Electrochim Acta 297:250–257

    CAS  Google Scholar 

  25. Zhang CF, Wu HB, Yuan CZ, Guo ZP, David Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem Int Ed 124:1–5

    CAS  Google Scholar 

  26. Wang HL, Shi ZQ, Jin J, Chong CB, Wang CY (2015) Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. Electroanal Chem 755:87–91

    CAS  Google Scholar 

  27. Wang LL, Liu YG, Chong CB, Wang J, Shi ZQ, Pan J (2016) Phenolic formaldehyde resin/graphene composites as lithium-ion batteries anode. Mater Lett 170:217–220

    CAS  Google Scholar 

  28. Qiu ZZ, Lin YM, Xin HL, Han P, Li DZ, Yang B, Li PC, Ullah S, Fan HS, Zhu CZ, Xu J (2018) Ultrahigh level nitrogen/sulfur co-doped carbon as high performance anode materials for lithium-ion batteries. Carbon 126:85–92

    CAS  Google Scholar 

  29. Zhang J, Yang ZX, Qiu JYC, Lee HW (2016) Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries. J Mater Chem A 4:5802–5809

    CAS  Google Scholar 

  30. Ye J, Zang J, Tian Z, Zheng M, Dong Q (2016) Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance. J Mater Chem A 4:13223–13227

    CAS  Google Scholar 

  31. Yang SN, Li GR, Zhu Q, Pan QM (2012) Covalent binding of Si nanoparticles to graphene sheets and its influence on lithium storage properties of Si negative electrode. J Mater Chem 22:3420–3425

    CAS  Google Scholar 

  32. Zhang C, Fu L, Liu N, Liu M, Wang Y, Liu Z (2011) Synthesis of nitrogen-doped graphene using embedded carbon and nitrogen sources. Adv Mater 23:1020–1024

    CAS  PubMed  Google Scholar 

  33. Zheng GR, Xiang YX, Xu LF, Luo H, Wang BL, Liu Y, Han X, Zhao WM, Chen SJ, Chen HL, Zhang QB, Zhu T, Yang Y (2018) Controlling surface oxides in Si/C Nanocomposite anodes for high-performance Li-ion batteries. Adv Energy Mater 1801718

  34. Jiang YQ, Chowdhury S, Balasubramanian R (2019) New insights into the role of nitrogen-bonding configurations in enhancing the photocatalytic activity of nitrogen-doped graphene aerogels. J Colloid Interface Sci 534:574–585

    CAS  PubMed  Google Scholar 

  35. Sirenko AA, Fox JR, Akimov IA, Xi XX, Ruvimov S, Liliental-Weber Z (2000) In situ Raman scattering studies of the amorphous and crystalline Si nanoparticles. Solid State Commun 113:553–558

    CAS  Google Scholar 

  36. Faraci G, Gibilisco S, Pennisi AR, Faraci C (2011) Quantum size effects in Raman spectra of Si nanocrystals. J Appl Phys 109:074311

    Google Scholar 

  37. Meier C, Luttjohann S, Kravets VG, Nienhaus H, Lorke A, Wiggers H (2006) Raman properties of silicon nanoparticles. Phys E 32:155–158

    CAS  Google Scholar 

  38. Lu ZY, Zhu JX, Sim DH, Zhou WW, Shi WH, Hng HH, Yan QY (2011) Synthesis of ultrathin silicon Nanosheets by using Graphene oxide as template. Chem Mater 23:5293–5295

    CAS  Google Scholar 

  39. Wang RP, Zhou GW, Liu YL, Pan SH, Zhang HZ, Yu DP, Zhang Z (2000) Raman spectral study of silicon nanowires: high-order scattering and phonon confinement effects. Phys Rev B Condens Matter 61:16827–16832

    CAS  Google Scholar 

  40. Jiang SX, Chen MF, Wang XY, Zhang Y, Huang C, Zhang YP, Wang Y (2019) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass carbon bifunctional interlayer for advanced lithium-sulfur batteries. Chem Eng J 355:478–486

    CAS  Google Scholar 

  41. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen QW (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568

    PubMed  PubMed Central  Google Scholar 

  42. Cao X, Chuan XY, Masse RC, Huang DB, Li S, Cao GZ (2015) A three layer design with mesoporous silica encapsulated by carbon core and shell for high energy lithium ion battery anode. J Mater Chem A 3:22739–22749

    CAS  Google Scholar 

  43. Du YJ, Hou MY, Zhou DD, Wang YG, Wang CX, Xia YY (2014) Interconnected sandwich structure carbon/Si-SiO2/carbon nanospheres composite as high performance anode material for lithium-ion batteries. J Energy Chem 23:315–323

    CAS  Google Scholar 

  44. Wang HG, Yuan CP, Zhou R, Duan Q, Li YH (2017) Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries. Chem Eng J 316:1004–1010

    CAS  Google Scholar 

  45. Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng XS, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ion batteries. Nano Energy 25:120–127

    CAS  Google Scholar 

  46. Polat BD, Keles O (2015) Multi-layered cu/Si nanorods and its use for lithium ion batteries. J Alloys Compd 622:418–425

    CAS  Google Scholar 

  47. Wang DS, Gao MX, Pan HG, Wang JH, Liu YF (2014) High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization. J Power Sources 256:190–199

    CAS  Google Scholar 

  48. Sun W, Wan L, Li XC, Zhao XH, Yan XB (2016) Bean pod-like Si@dopamine-derived amorphous carbon@N-doped graphene nanosheet scrolls for high performance lithium storage. J Mater Chem A 4:10948–11095

    CAS  Google Scholar 

  49. Wang J, Polleux JL, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    CAS  Google Scholar 

  50. Tian LL, Zhang MJ, Wu C, Wei Y, Zheng JX, Lin LP, Lu J, Amine K, Zhuang QC, Pan F (2015) γ-Fe2O3 nanocrystalline microspheres with hybrid behavior of battery-supercapacitor for superior lithium storage. ACS Appl Mater Interfaces 7:26284–26290

    CAS  PubMed  Google Scholar 

  51. Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55:922–926

    CAS  Google Scholar 

  52. Wu Q, Shao Q, Li Q, Duan Q, Li YH, Wang HG (2018) Dual carbon-confined SnO2 hollow Nanospheres enabling high performance for the reversible storage of alkali metal ions. ACS Appl Mater Interfaces 10:15642–15651

    CAS  PubMed  Google Scholar 

  53. Wang HG, Wu Q, Wang YH, Wang X, Wu LL, Song SY, Zhang HJ (2018) Molecular engineering of Monodisperse SnO2 Nanocrystals anchored on doped Graphene with high-performance Lithium/sodium-storage properties in half/full cells. Adv Energy Mater 9:1802993

    Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundations of China (Nos. 51331006 and 51271044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinglong Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, J., Zhang, Z., Yang, W. et al. Three-dimensional porous carbon skeleton supporting Si nanosheets as anode for high-performance lithium ion batteries. Ionics 26, 2233–2245 (2020). https://doi.org/10.1007/s11581-019-03409-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03409-3

Keywords

Navigation