Skip to main content
Log in

Improved anodic stripping voltammetric detection of zinc on a disposable screen-printed gold electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Herein, we report the improved detection of Zn2+ via square-wave anodic stripping voltammetry utilizing an electrochemically treated screen-printed gold electrode. Surface analysis of the gold surface revealed increase in rugosity, removal of residual polymeric ink, and consequent higher access to gold microparticles after electrochemical treatment which resulted in improved response for Zn2+ (detection limit of 2.5 μg L− 1). The intra- and inter-electrode precision values were calculated as 3% (n = 10) and 12.5% (n = 3), respectively, applying − 0.9 V for 90 s under stirring of 1000 rpm for pre-concentration of Zn2+ (step potential: 4 mV; amplitude: 50 mV, frequency: 50 Hz) in 0.04 mol L− 1 Britton-Robinson buffer (pH 7.0) as the background electrolyte. Satisfactory recovery values ranging 96 to 104% were achieved for the analysis of struvite (spiked sample). Therefore, the proposed sensor provides precise and accurate direct analyses, without interference from other metals, with rapid responses enabling on-site analyses.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rico MÁ, Olivares-Marín M, Gil EP (2009) Modification of carbon screen-printed electrodes by adsorption of chemically synthesized bi nanoparticles for the voltammetric stripping detection of Zn(II), cd(II) and Pb(II). Talanta 80:631–635

    PubMed  Google Scholar 

  2. Armenta S, Garrigues S, de la Guardia M (2015) The role of green extraction techniques in green analytical chemistry. TrAC Trends Anal Chem 71:2–8

    CAS  Google Scholar 

  3. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: green analytical procedure index. Talanta 181:204–209

    PubMed  Google Scholar 

  4. Li Y, Fabiano-Tixier AS, Vian MA, Chemat F (2013) Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends Anal Chem 47:1–11

    Google Scholar 

  5. de la Guardia M, Garrigues S (2014) The social responsibility of environmental analysis. Trends Environ Anal Chem 3–4:7–13

    Google Scholar 

  6. Buffle J, Tercier-Waeber M-L (2005) Voltammetric environmental trace-metal analysis and speciation: from laboratory to in situ measurements. TrAC Trends Anal Chem 24:172–191

    CAS  Google Scholar 

  7. Honeychurch KC (2012) Screen-printed electrochemical sensors and biosensors for monitoring metal pollutants. Inscie J 2:1–51

    CAS  Google Scholar 

  8. Królicka A, Bobrowski A (2016) Employing a magnetic field to amplify zinc signal obtained at bismuth film screen-printed electrodes generated using dual bismuth precursor. Electrochim Acta 187:224–233

    Google Scholar 

  9. Dueraning A, Kanatharana P, Thavarungkul P, Limbut W (2016) An environmental friendly electrode and extended cathodic potential window for anodic stripping voltammetry of zinc detection. Electrochim Acta 221:133–143

    CAS  Google Scholar 

  10. de Oliveira PR, Lamy-Mendes AC, Gogola JL et al (2015) Mercury nanodroplets supported at biochar for electrochemical determination of zinc ions using a carbon paste electrode. Electrochim Acta 151:525–530

    CAS  Google Scholar 

  11. Petrović S, Guzsvány V, Ranković N et al (2019) Trace level voltammetric determination of Zn(II) in selected nutrition related samples by bismuth-oxychloride-multiwalled carbon nanotube composite based electrode. Microchem J 146:178–186

    Google Scholar 

  12. Noulas C, Tziouvalekas M, Karyotis T (2018) Zinc in soils, water and food crops. J Trace Elem Med Biol 49:252–260

    CAS  PubMed  Google Scholar 

  13. Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    CAS  PubMed  Google Scholar 

  14. Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    CAS  PubMed  Google Scholar 

  15. Lima AF, Lima FF, Richter EM, Munoz RAA (2016) Combination of sonication and heating for metal extraction from inorganic fertilizers prior to microwave-induced plasma spectrometry determinations. Appl Acoust 103:124–128

    Google Scholar 

  16. Bakircioglu D, Topraksever N, Kurtulus YB (2014) Determination of zinc in edible oils by flow injection FAAS after extraction induced by emulsion breaking procedure. Food Chem 151:219–224

    CAS  PubMed  Google Scholar 

  17. Brandao GC, de Jesus RM, da Silva EGP, Ferreira SLC (2010) Use of slurry sampling for the direct determination of zinc in yogurt by high resolution-continuum source flame atomic absorption spectrometry. Talanta 81:1357–1359

    CAS  PubMed  Google Scholar 

  18. Mollo A, Sixto A, Falchi L et al (2017) Zinc determination in Tannat wine by direct injection onto graphite tube: Electrothermal AAS as an alternative to flame AAS. Microchem J 135:239–244

    CAS  Google Scholar 

  19. Li W, Simmons P, Shrader D, Herrman TJ, Dai SY (2013) Microwave plasma-atomic emission spectroscopy as a tool for the determination of copper, iron, manganese and zinc in animal feed and fertilizer. Talanta 112:43–48

    CAS  PubMed  Google Scholar 

  20. Santos HM, Coutinho JP, Amorim FAC, Lôbo IP, Moreira LS, Nascimento MM, de Jesus RM (2019) Microwave-assisted digestion using diluted HNO3 and H2O2 for macro and microelements determination in guarana samples by ICP OES. Food Chem 273:159–165

    CAS  PubMed  Google Scholar 

  21. de Oliveira SS, da Costa SSL, Santos DM et al (2014) Simultaneous determination of macronutrients, micronutrients and trace elements in mineral fertilizers by inductively coupled plasma optical emission spectrometry. Spectrochim Acta B At Spectrosc 96:1–7

    Google Scholar 

  22. Pesonen J, Kuokkanen T, Rautio P, Lassi U (2017) Bioavailability of nutrients and harmful elements in ash fertilizers: effect of granulation. Biomass Bioenergy 100:92–97

    CAS  Google Scholar 

  23. Resende LV, Nascentes CC (2016) A simple method for the multi-elemental analysis of organic fertilizer by slurry sampling and total reflection X-ray fluorescence. Talanta 147:485–492

    CAS  PubMed  Google Scholar 

  24. Mota MFB, Gama EM, Rodrigues GDC et al (2018) A dilute-and-shoot sample preparation strategy for new and used lubricating oils for Ca, P, S and Zn determination by total reflection X-ray fluorescence. Spectrochim Acta B At Spectrosc 139:1–5

    CAS  Google Scholar 

  25. Andrade DF, Pereira-Filho ER (2016) Direct determination of contaminants and major and minor nutrients in solid fertilizers using laser-induced breakdown spectroscopy (LIBS). J Agric Food Chem 64:7890–7898

    CAS  PubMed  Google Scholar 

  26. Costa VC, Amorim FAC, de Babos DV, Pereira-Filho ER (2019) Direct determination of Ca, K, mg, Na, P, S, Fe and Zn in bivalve mollusks by wavelength dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown spectroscopy (LIBS). Food Chem 273:91–98

    CAS  PubMed  Google Scholar 

  27. Tormin TF, Cunha RR, Da Silva RAB et al (2014) Combination of screen-printed electrodes and batch injection analysis: a simple, robust, high-throughput, and portable electrochemical system. Sensors Actuators B Chem 202:93–98

    CAS  Google Scholar 

  28. Couto RAS, Lima JLFC, Quinaz MB (2016) Recent developments, characteristics and potential applications of screen-printed electrodes in pharmaceutical and biological analysis. Talanta 146:801–814

    CAS  PubMed  Google Scholar 

  29. Li M, Li Y-T, Li D-W, Long Y-T (2012) Recent developments and applications of screen-printed electrodes in environmental assays—a review. Anal Chim Acta 734:31–44

    CAS  PubMed  Google Scholar 

  30. Squissato AL, Almeida ES, Silva SG et al (2018) Screen-printed electrodes for quality control of liquid (bio)fuels. TrAC Trends Anal Chem 108:210–220

    CAS  Google Scholar 

  31. Mohamed HM (2016) Screen-printed disposable electrodes: pharmaceutical applications and recent developments. TrAC Trends Anal Chem 82:1–11

    CAS  Google Scholar 

  32. Squissato AL, Rocha DP, Almeida ES et al (2018) Stripping Voltammetric determination of mercury in fish oil capsules using a screen-printed gold electrode. Electroanalysis 30:20–23

    CAS  Google Scholar 

  33. Chu Z, Peng J, Jin W (2017) Advanced nanomaterial inks for screen-printed chemical sensors. Sensors Actuators B Chem 243:919–926

    CAS  Google Scholar 

  34. Trojanowicz M (2016) Impact of nanotechnology on design of advanced screen-printed electrodes for different analytical applications. TrAC Trends Anal Chem 84:22–47

    CAS  Google Scholar 

  35. Honeychurch KC, Hart JP (2003) Screen-printed electrochemical sensors for monitoring metal pollutants. TrAC Trends Anal Chem 22:456–469

    CAS  Google Scholar 

  36. Li M, Li D-W, Xiu G, Long Y-T (2017) Applications of screen-printed electrodes in current environmental analysis. Curr Opin Electrochem 3:137–143

    CAS  Google Scholar 

  37. Economou A (2018) Screen-printed electrodes modified with “green” metals for electrochemical stripping analysis of toxic elements. Sensors 18:1032–1054

    Google Scholar 

  38. Barton J, García MBG, Santos DH et al (2016) Screen-printed electrodes for environmental monitoring of heavy metal ions: a review. Microchim Acta 183:503–517

    CAS  Google Scholar 

  39. Ramalingam M, Ponnusamy VK, Sangilimuthu SN (2019) A nanocomposite consisting of porous graphitic carbon nitride nanosheets and oxidized multiwalled carbon nanotubes for simultaneous stripping voltammetric determination of cadmium(II), mercury(II), lead(II) and zinc(II). Microchim Acta 186:69–78

    Google Scholar 

  40. Khairy M, Kadara RO, Kampouris DK, Banks CE (2010) Disposable bismuth oxide screen printed electrodes for the sensing of zinc in seawater. Electroanalysis 22:1455–1459

    CAS  Google Scholar 

  41. Teng Y, Singh CK, Sadak O et al (2019) Electrochemical detection of mobile zinc ions for early diagnosis of prostate cancer. J Electroanal Chem 833:269–274

    CAS  Google Scholar 

  42. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), cd(II), and Pb(II). Anal Chim Acta 874:40–48

    CAS  PubMed  Google Scholar 

  43. Chaiyo S, Mehmeti E, Žagar K, Siangproh W, Chailapakul O, Kalcher K (2016) Electrochemical sensors for the simultaneous determination of zinc, cadmium and lead using a Nafion/ionic liquid/graphene composite modified screen-printed carbon electrode. Anal Chim Acta 918:26–34

    CAS  PubMed  Google Scholar 

  44. Fu L, Li X, Yu J, Ye J (2013) Facile and simultaneous stripping determination of zinc, cadmium and Lead on disposable multiwalled carbon nanotubes modified screen-printed electrode. Electroanalysis 25:567–572

    CAS  Google Scholar 

  45. Trachioti MG, Hrbac J, Prodromidis MI (2018) Determination of cd and Zn with “green” screen-printed electrodes modified with instantly prepared sparked tin nanoparticles. Sensors Actuators B Chem 260:1076–1083

    CAS  Google Scholar 

  46. Injang U, Noyrod P, Siangproh W, Dungchai W, Motomizu S, Chailapakul O (2010) Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal Chim Acta 668:54–60

    CAS  PubMed  Google Scholar 

  47. Honeychurch KC, Rymansaib Z, Iravani P (2018) Anodic stripping voltammetric determination of zinc at a 3-D printed carbon nanofiber–graphite–polystyrene electrode using a carbon pseudo-reference electrode. Sensors Actuators B Chem 267:476–482

    CAS  Google Scholar 

  48. Baig N, Sajid M, Saleh TA (2019) Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends Anal Chem 111:47–61

    CAS  Google Scholar 

  49. Jevtić S, Stefanović A, Stanković DM et al (2018) Boron-doped diamond electrode — a prestigious unmodified carbon electrode for simple and fast determination of bentazone in river water samples. Diam Relat Mater 81:133–137

    Google Scholar 

  50. Squissato AL, Neri TS, Coelho NMM et al (2018) In situ electrochemical determination of free cu(II) ions in biodiesel using screen-printed electrodes: direct correlation with oxidation stability. Fuel 234:1452–1458

    CAS  Google Scholar 

  51. Bernalte E, Sánchez CM, Gil EP (2011) Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal Chim Acta 689:60–64

    CAS  PubMed  Google Scholar 

  52. Almeida ES, Silva LAJ, Sousa RMF, Richter EM, Foster CW, Banks CE, Munoz RA (2016) Analytica Chimica Acta organic-resistant screen-printed graphitic electrodes : application to on-site monitoring of liquid fuels. Anal Chim Acta 934:1–8

    CAS  PubMed  Google Scholar 

  53. Kadara RO, Jenkinson N, Banks CE (2009) Characterisation of commercially available electrochemical sensing platforms. Sensors Actuators B Chem 138:556–562

    CAS  Google Scholar 

  54. Fanjul-Bolado P, Hernández-Santos D, Lamas-Ardisana PJ et al (2008) Electrochemical characterization of screen-printed and conventional carbon paste electrodes. Electrochim Acta 53:3635–3642

    CAS  Google Scholar 

  55. Tormin TF, Narciso LCD, Richter EM, Munoz RAA (2015) Batch-injection stripping voltammetry of zinc at a gold electrode: application for fuel bioethanol analysis. Electrochim Acta 164:90–96

    CAS  Google Scholar 

  56. De Souza D, Machado SAS, Avaca LA (2003) Voltametria de onda quadrada. Primeira parte: Aspectos teóricos. Quim Nova 26:81–89

    CAS  Google Scholar 

  57. Squissato AL, Richter EM, Munoz RAA (2019) Voltammetric determination of copper and tert-butylhydroquinone in biodiesel: a rapid quality control protocol. Talanta 201:433–440

    CAS  PubMed  Google Scholar 

  58. João AF, Squissato AL, Fernandes GM et al (2019) Iron (III) determination in bioethanol fuel using a smartphone-based device. Microchem J 146:1134–1139

    Google Scholar 

  59. Uysal A, Yilmazel YD, Demirer GN (2010) The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. J Hazard Mater 181:248–254

    CAS  PubMed  Google Scholar 

  60. Rouff AA, Lager GA, Arrue D, Jaynes J (2018) Trace elements in struvite equine enteroliths: concentration, speciation and influence of diet. J Trace Elem Med Biol 45:23–30

    CAS  PubMed  Google Scholar 

  61. Muhmood A, Lu J, Dong R, Wu S (2019) Formation of struvite from agricultural wastewaters and its reuse on farmlands: status and hindrances to closing the nutrient loop. J Environ Manag 230:1–13

    CAS  Google Scholar 

  62. Huang H, Li B, Li J, Zhang P, Yu W, Zhao N, Guo G, Young B (2019) Influence of process parameters on the heavy metal (Zn2+, Cu2+ and Cr3+) content of struvite obtained from synthetic swine wastewater. Environ Pollut 245:658–665

    CAS  PubMed  Google Scholar 

  63. Lima FF, Tormin TF, Richter EM, Munoz RAA (2014) Stripping voltammetric determination of manganese in bioethanol. Microchem J 116:178–182

    CAS  Google Scholar 

  64. Lu Z, Zhang J, Dai W et al (2017) A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and cu(II). Microchim Acta 184:4731–4740

    CAS  Google Scholar 

  65. Koudelkova Z, Syrovy T, Ambrozova P et al (2017) Determination of zinc, cadmium, Lead, copper and silver using a carbon paste electrode and a screen printed electrode modified with chromium(III) oxide. Sensors 17:1832

    Google Scholar 

Download references

Funding

The authors are grateful to FAPES/SEAG (n° 721/2016), FAPEMIG (PPM-00640-16), CNPq (307271/2017-0), CAPES (financial code 001 and Pro Forenses 23038.007073/2014-12) and INCTBio (CNPq grant no.465389/2014-7) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo A. A. Munoz.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, S.M., Squissato, A.L., Rocha, D.P. et al. Improved anodic stripping voltammetric detection of zinc on a disposable screen-printed gold electrode. Ionics 26, 2611–2621 (2020). https://doi.org/10.1007/s11581-019-03379-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03379-6

Keywords

Navigation