Skip to main content

Advertisement

Log in

In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium-rich layered oxide cathode material gains a great concern as a potential cathode material for high energy density lithium-ion batteries recently; however, the low coulombic efficiency and poor rate performance still impede its commercial applications. In this work, a Li-rich@spinel@carbon heterostructure cathode material was synthesized via a solvothermal method together with in situ synchronous carbonization-reduction method. The unique structure fabricates fast Li+ diffusion channels of in situ-generated spinel structure (Fd-3 m) and electrons highway of carbon coating on the surface of lithium-rich cathode materials. Corresponding to the high lithium-ion diffusion coefficient and electric conductive, the heterostructures’ cathode material delivers a high discharge capacity of 313.9 mAh g−1 at 0.2 C and superior rate performance of 186.1 mAh g−1 at 5 C. The dual protective layer of spinel phase and carbon also help to improve the capacity retention of the samples (which remains 227.3 mAh g−1 and a retention of 102.7% after 100 cycles at 1 C rate). This work opens up a new route in terms of the design and synthesis of multi-phase cathode electrode materials for high performance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zheng J, Myeong S, Cho W, Yan P, Xiao J, Wang C, Cho J, Zhang J-G (2017) Li- and Mn-Rich Cathode Materials: Challenges to Commercialization. Advanced Energy Materials 7:1601284

    Google Scholar 

  2. Kim UH, Ryu HH, Kim JH, Mücke R, Kaghazchi P, Yoon CS, Sun YK (2019) Microstructure-Controlled Ni-Rich Cathode Material by Microscale Compositional Partition for Next-Generation Electric Vehicles. Advanced Energy Materials 9:1803902

    Google Scholar 

  3. Nayak PK, Erickson EM, Schipper F, Penki TR, Munichandraiah N, Adelhelm P, Sclar H, Amalraj F, Markovsky B, Aurbach D (2018) Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li- and Mn-Rich Cathode Materials for Li-Ion Batteries. Advanced Energy Materials 8:1702397

    Google Scholar 

  4. Zhang S, Gu H, Pan H, Yang S, Du W, Li X, Gao M, Liu Y, Zhu M, Ouyang L, Jian D, Pan F (2017) A Novel Strategy to Suppress Capacity and Voltage Fading of Li- and Mn-Rich Layered Oxide Cathode Material for Lithium-Ion Batteries. Advanced Energy Materials 7:1601066

    Google Scholar 

  5. Thackeray MM, Kang SH, Johnson CS, Vaughey JT, Hackney SA (2006) Comments on the structural complexity of lithium-rich Li1+xM1−xO2 electrodes (M=Mn, Ni, Co) for lithium batteries. Electrochemistry Communications 8:1531

    CAS  Google Scholar 

  6. Zhang H, Karki K, Huang Y, Whittingham MS, Stach EA, Zhou G (2017) Atomic Insight into the Layered/Spinel Phase Transformation in Charged LiNi0.80Co0.15Al0.05O2 Cathode Particles. The Journal of Physical Chemistry C 121:1421

    CAS  Google Scholar 

  7. Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood DL, Daniel C (2013) Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. Journal of Power Sources 229:239

    CAS  Google Scholar 

  8. Zheng F, Deng Q, Zhong W, Ou X, Pan Q, Liu Y, Xiong X, Yang C, Chen Y, Liu M (2018) Fluorine-Doped Carbon Surface Modification of Li-Rich Layered Oxide Composite Cathodes for High Performance Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering 6:16399

    CAS  Google Scholar 

  9. Ahn J, Kim JH, Cho BW, Chung KY, Kim S, Choi JW, Oh SH (2017) Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion Batteries. Nano Lett 17:7869

    CAS  PubMed  Google Scholar 

  10. Yang M, Hu B, Geng F, Li C, Lou X, Hu B (2018) Mitigating voltage decay in high-capacity Li1.2Ni0.2Mn0.6O2 cathode material by surface K+ doping. Electrochimica Acta 291:278

    CAS  Google Scholar 

  11. Zhao T, Zhang Y, Li Y, Sun X, Li Y, Ji R (2018) Electrochemical activation of novel Fe-based Li-rich cathode material for lithium-ion batteries. Journal of Alloys and Compounds 741:597

    CAS  Google Scholar 

  12. Miao X, Ni H, Zhang H, Wang C, Fang J, Yang G (2014) Li2ZrO3-coated 0.4Li2MnO3·0.6LiNi1/3Co1/3Mn1/3O2 for high performance cathode material in lithium-ion battery. Journal of Power Sources 264:147

    CAS  Google Scholar 

  13. Ma L, Li Y, Chen Z, Zhang F, Ding P, Mao L, Lian F (2017) Improved Rate Capability of Li-Rich Cathode Materials by Building a Li+-Conductive LixBPO4+x/2 Nanolayer from Residual Li2CO3 on the Surface. ChemElectroChem 4:1443

    CAS  Google Scholar 

  14. Yu F-D, Que L-F, Wang Z-B, Zhang Y, Xue Y, Liu B-S, Gu D-M (2016) Layered-spinel capped nanotube assembled 3D Li-rich hierarchitectures for high performance Li-ion battery cathodes. Journal of Materials Chemistry A 4:18416

    CAS  Google Scholar 

  15. Ryu W-H, Lim S-J, Kim W-K, Kwon H (2014) 3-D dumbbell-like LiNi1/3Mn1/3Co1/3O2 cathode materials assembled with nano-building blocks for lithium-ion batteries. Journal of Power Sources 257:186

    CAS  Google Scholar 

  16. Zeng J, Cui Y, Qu D, Zhang Q, Wu J, Zhu X, Li Z, Zhang X (2016) Facile Synthesis of Platelike Hierarchical Li1.2Mn0.54Ni0.13Co0.13O2 with Exposed {010} Planes for High-Rate and Long Cycling-Stable Lithium Ion Batteries. ACS Appl Mater Interfaces 8:26082

    CAS  PubMed  Google Scholar 

  17. Ma D, Li Y, Wu M, Deng L, Ren X, Zhang P (2016) Enhanced cycling stability of Li-rich nanotube cathodes by 3D graphene hierarchical architectures for Li-ion batteries. Acta Materialia 112:11

    CAS  Google Scholar 

  18. Hy S, Felix F, Rick J, Su WN, Hwang BJ (2014) Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). J Am Chem Soc 136:999

    CAS  PubMed  Google Scholar 

  19. Sathiya M, Abakumov AM, Foix D, Rousse G, Ramesha K, Saubanere M, Doublet ML, Vezin H, Laisa CP, Prakash AS, Gonbeau D, VanTendeloo G, Tarascon JM (2015) Origin of voltage decay in high-capacity layered oxide electrodes. Nat Mater 14:230

    CAS  PubMed  Google Scholar 

  20. Assat G, Tarascon J-M (2018) Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nature Energy 3:373

    CAS  Google Scholar 

  21. Sun YK, Lee MJ, Yoon CS, Hassoun J, Amine K, Scrosati B (2012) The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for Li-ion batteries. Adv Mater 24:1192

    CAS  PubMed  Google Scholar 

  22. Chen D, Tu W, Chen M, Hong P, Zhong X, Zhu Y, Yu Q, Li W (2016) Synthesis and performances of Li-Rich@AlF3 @Graphene as cathode of lithium ion battery. Electrochimica Acta 193:45

    CAS  Google Scholar 

  23. Liu X, Huang T, Yu A (2015) Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochimica Acta 163:82

    CAS  Google Scholar 

  24. Su N, Lyu Y, Gu R, Guo B (2018) Al2O3 coated Li1.2Ni0.2Mn0.2Ru0.4O2 as cathode material for Li-ion batteries. Journal of Alloys and Compounds 741:398

    CAS  Google Scholar 

  25. Zheng F, Yang C, Xiong X, Xiong J, Hu R, Chen Y, Liu M (2015) Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade. Angew Chem Int Ed Engl 54:13058

    CAS  PubMed  Google Scholar 

  26. Zhou L, Yin Z, Tian H, Ding Z, Li X, Wang Z, Guo H (2018) Spinel-embedded and Li3PO4 modified Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for High-Performance Li-Ion battries. Applied Surface Science 456:763

    CAS  Google Scholar 

  27. Deng Y-F, Zhao S-X, Xu Y-H, Nan C-W (2014) Effect of the morphology of Li–La–Zr–O solid electrolyte coating on the electrochemical performance of spinel LiMn1.95Ni0.05O3.98F0.02 cathode materials. J. Mater. Chem. A 2:18889

    CAS  Google Scholar 

  28. Martha SK, Nanda J, Kim Y, Unocic RR, Pannala S, Dudney NJ (2013) Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2. Journal of Materials Chemistry A 1:5587

    CAS  Google Scholar 

  29. Wu F, Li N, Su Y, Shou H, Bao L, Yang W, Zhang L, An R, Chen S (2013) Spinel/layered heterostructured cathode material for high-capacity and high-rate Li-ion batteries. Adv Mater 25:3722

    CAS  PubMed  Google Scholar 

  30. Wu F, Li N, Su Y, Zhang L, Bao L, Wang J, Chen L, Zheng Y, Dai L, Peng J, Chen S (2014) Ultrathin spinel membrane-encapsulated layered lithium-rich cathode material for advanced Li-ion batteries. Nano Lett 14:3550

    CAS  PubMed  Google Scholar 

  31. Kim D, Sandi G, Croy JR, Gallagher KG, Kang S-H, Lee E, Slater MD, Johnson CS, Thackeray MM (2012) Composite ‘Layered-Layered-Spinel’ Cathode Structures for Lithium-Ion Batteries. Journal of The Electrochemical Society 160:A31

    Google Scholar 

  32. Zhang J, Gao R, Sun L, Li Z, Zhang H, Hu Z, Liu X (2016) Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Phys Chem Chem Phys 18:25711

    CAS  PubMed  Google Scholar 

  33. Yu R, Zhang Z, Jamil S, Chen J, Zhang X, Wang X, Yang Z, Shu H, Yang X (2018) Effects of Nanofiber Architecture and Antimony Doping on the Performance of Lithium-Rich Layered Oxides: Enhancing Lithium Diffusivity and Lattice Oxygen Stability. ACS Appl Mater Interfaces 10:16561

    CAS  PubMed  Google Scholar 

  34. Huang Y, Zhang X, Yu R, Jamil S, Cao S, Fang S, Wang Y, Tang K, Chen G, Luo Z, Yang X, Wang X (2019) Preparation and Performance of the Heterostructured Material with a Ni-Rich Layered Oxide Core and a LiNi0.5Mn1.5O4-like Spinel Shell. ACS Appl Mater Interfaces 11:16556

    CAS  PubMed  Google Scholar 

  35. Zhang X.D., Shi J.L., Liang J.Y., Yin Y.X., Zhang J.N., Yu X.Q., Guo Y.G. (2018) Suppressing Surface Lattice Oxygen Release of Li-Rich Cathode Materials via Heterostructured Spinel Li4Mn5O12 Coating, Adv Mater 1801751.

  36. Wu Q, Zhang X, Sun S, Wan N, Pan D, Bai Y, Zhu H, Hu YS, Dai S (2015) Improved electrochemical performance of spinel LiMn1.5Ni0.5O4 through MgF2 nano-coating. Nanoscale 7:15609

    CAS  PubMed  Google Scholar 

  37. Chen JJ, Li ZD, Xiang HF, Wu WW, Guo X, Wu YC (2014) Bifunctional effects of carbon coating on high-capacity Li1.2Ni0.13Co0.13Mn0.54O2 cathode for lithium-ion batteries. Journal of Solid State Electrochemistry 19:1027

    Google Scholar 

  38. Ma Y, Liu P, Xie Q, Zhang G, Zheng H, Cai Y, Li Z, Wang L, Zhu Z-Z, Mai L, Peng D-L (2019) Double-shell Li-rich layered oxide hollow microspheres with sandwich-like carbon@spinel@layered@spinel@carbon shells as high-rate lithium ion battery cathode. Nano Energy 59:184

    CAS  Google Scholar 

  39. Xia Q, Zhao X, Xu M, Ding Z, Liu J, Chen L, Ivey DG, Wei W (2015) A Li-rich Layered@Spinel@Carbon heterostructured cathode material for high capacity and high rate lithium-ion batteries fabricated via an in situ synchronous carbonization-reduction method. Journal of Materials Chemistry A 3:3995

    CAS  Google Scholar 

  40. Yu F-D, Que L-F, Xu C-Y, Wang M-J, Sun G, Duh J-G, Wang Z-B (2019) Dual conductive surface engineering of Li-Rich oxides cathode for superior high-energy-density Li-Ion batteries. Nano Energy 59:527

    CAS  Google Scholar 

  41. Sun X, Li Y (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed Engl 43:597

    PubMed  Google Scholar 

  42. Falco C, Perez CF, Babonneau F, Gervais C, Laurent G, Titirici MM, Baccile N (2011) Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR. Langmuir 27:14460

    CAS  PubMed  Google Scholar 

  43. Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. Journal of Materials Chemistry 17:3112

    CAS  Google Scholar 

  44. Li D, Du G, Wang J, Guo Z, Chen Z, Liu H (2012) Microwave-assisted Synthesis of Flower-like Structure ϵ-MnO2 as Cathode for Lithium Ion Batteries. Journal of the Chinese Chemical Society 59:1211

    CAS  Google Scholar 

  45. Wu B, Yang X, Jiang X, Zhang Y, Shu H, Gao P, Liu L, Wang X (2018) Synchronous Tailoring Surface Structure and Chemical Composition of Li-Rich-Layered Oxide for High-Energy Lithium-Ion Batteries. Advanced Functional Materials 28:1803392

    Google Scholar 

  46. Shi S, Zhang S, Wu Z, Wang T, Zong J, Zhao M, Yang G (2017) Full microwave synthesis of advanced Li-rich manganese based cathode material for lithium ion batteries. Journal of Power Sources 337:82

    CAS  Google Scholar 

  47. Zhao T, Gao X, Wei Z, Guo K, Wu F, Li L, Chen R (2018) Three-dimensional Li1.2Ni0.2Mn 0.6O2 cathode materials synthesized by a novel hydrothermal method for lithium-ion batteries. Journal of Alloys and Compounds 757:16

    CAS  Google Scholar 

  48. Ouyang D, Huang Z, Choy WCH (2019) Solution-Processed Metal Oxide Nanocrystals as Carrier Transport Layers in Organic and Perovskite Solar Cells. Advanced Functional Materials 29:1804660

    Google Scholar 

  49. Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J (2019) Simultaneously Dual Modification of Ni-Rich Layered Oxide Cathode for High-Energy Lithium-Ion Batteries. Advanced Functional Materials 29:1808825

    Google Scholar 

  50. Li L, Chen Z, Zhang Q, Xu M, Zhou X, Zhu H, Zhang K (2015) A hydrolysis-hydrothermal route for the synthesis of ultrathin LiAlO2-inlaid LiNi0.5Co0.2Mn0.3O2 as a high-performance cathode material for lithium ion batteries. Journal of Materials Chemistry A 3:894

    CAS  Google Scholar 

Download references

Funding

The authors would like to thank the National Natural Science Foundation of China (Grant No.51902443) and the Natural Science Foundation of Hunan Province, China (Grant No.2018jj3595) for their financial support and the Opening Project of State Key Laboratory of Advanced Chemical Power Sources(No: SKL ACPS C16)for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufang Chen or Chunman Zheng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, D., Chen, Y., Zheng, C. et al. In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics 26, 2177–2186 (2020). https://doi.org/10.1007/s11581-019-03342-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03342-5

Keywords

Navigation