Skip to main content

Advertisement

Log in

Synthesis of pH-moderated cobalt molybdate with bifunctional (photo catalyst and graphene-based supercapacitor) application

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The present manuscript deals with one photosynthesis of cobalt molybdate for multifunctional application as supercapacitor and photo catalyst. The cobalt molybdate is synthesized by various concentration of urea as precursor. Nanostructured transition metal has been synthesized by hydrothermal method from spent catalyst leach liquor. Different physico-chemical characterization techniques are obtained to illustrate the nanomaterials followed by X-ray diffraction, field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and nitrogen adsorption–desorption isotherm for surface area analysis. Nanorod cobalt molybdate is proved as efficient photocatalyst for Rhodamine B dye under visible light irradiation, which possess a high degradation rate of 98% after 15 min. Electrochemically active cobalt molybdate shows high specific capacitance value of maximum specific capacitance of 175.34 F g-1at three-electrode system and 74.2 F g−1at two-electrode system. It also revealed excellent rate capability and superior cycling stability with long cycle life (92.7% retention in specific capacitance after 5000 cycles) along with high energy and power densities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ajamein H, Haghighi M, Shokrani R, Abdollahifar M (2016) On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: Effect of precursor, ultrasound irradiation and urea/nitrate ratio. J Mol Catal A Chem 421:222–234. https://doi.org/10.1016/j.molcata.2016.05.028

    Article  CAS  Google Scholar 

  2. Ana de Moura AP, Larissa de Oliveira H, Pereira S, Paula F, Rosa V, Ieda L, Máximo SL, Longo E, Varela AJ (2012) Structural, optical, and magnetic properties of NiMoO4 nanorods prepared by microwave sintering. Adv Chem Eng Sci 2:465–473. https://doi.org/10.1155/2015/315084

    Article  CAS  Google Scholar 

  3. Barik R, Devi N, Nandi D, Siwal S, Ghosh SK, Mallick K (2017) Multifunctional performance of nanocrystalline tin oxide. J Alloys Compd 723:201–207. https://doi.org/10.1016/j.jallcom.2017.06.180

    Article  CAS  Google Scholar 

  4. Barmi MJ, Sundaram MM (2016) Role of polymeric surfactant in the synthesis of cobalt molybdate nanospheres for hybrid capacitor applications. RSC Adv 6:36152–36162. https://doi.org/10.1039/c6ra02628a

    Article  CAS  Google Scholar 

  5. Baskar S, Meyrick D, Ramakrishnan K, Minakshi M (2014) Facile and large-scale combustion synthesis of α-CoMoO4: Mimics the redox behavior of a battery in aqueous hybrid device. Chem Eng J 253:502–507. https://doi.org/10.1016/j.cej.2014.05.068

    Article  CAS  Google Scholar 

  6. Candler J, Elmore T, Gupta BK, Dong L, Palchoudhury S, Gupta RK (2015) New insight into high-temperature driven morphology reliant CoMoO4 flexible supercapacitors. New J Chem 39:6108–6116. https://doi.org/10.1039/c5nj00446b

    Article  CAS  Google Scholar 

  7. Cao H, Xiao Y, Zhang S (2011) The synthesis and photocatalytic activity of ZnSe microspheres. Nanotechnology 22:015604 (8 pp. https://doi.org/10.1088/0957-4484/22/1/015604

    Article  CAS  PubMed  Google Scholar 

  8. Cao J, Wang Y, Zhou Y, Ouyang JH, Jia D, Guo L (2013) High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem 689:201–206. https://doi.org/10.1016/j.jelechem.2012.10.024

    Article  CAS  Google Scholar 

  9. Carvalho LS, de Melo e Melo VR, Vitor Sobrinho E et al (2018) Effect of urea excess on the properties of the MgAl2O4 obtained by microwave-assisted combustion. Mater Res 21. https://doi.org/10.1590/1980-5373-MR-2017-0189

  10. Cherian CT, Reddy MV, Haur SC, Chowdari BVR (2013) Interconnected network of CoMoO4 submicrometer particles as high capacity anode material for lithium ion batteries. ACS Appl. Mater. Interfaces, 5:918-923.doi. https://doi.org/10.1021/am302583c

  11. Dhanasekar M, Satyajit R, Rout CS, Bhat VS (2017) Efficient sono-photocatalytic degradation of methylene blue using nickel molybdate nanosheets under diffused sunlight. J Environ Chem Eng 5:2997–3004. https://doi.org/10.1016/j.jece.2017.05.054

    Article  CAS  Google Scholar 

  12. Ding Y, Wan Y, Min YL, Zhang W, Yu SH (2008) General synthesis and phase control of metal molybdate hydrates MMoO4·nH2O (M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties. Inorg Chem 47:7813–7823. https://doi.org/10.1021/ic8007975

    Article  CAS  PubMed  Google Scholar 

  13. Guo D, Zhang H, Yu X, Zhang M, Zhang P, Li Q, Wang T (2013) Facile synthesis and excellent electrochemical properties of CoMoO4 nanoplate arrays as supercapacitors. J Mater Chem A 1:7247–7254. https://doi.org/10.1039/c3ta10909g

    Article  CAS  Google Scholar 

  14. Hangloo V, Pandita S, Bamzai KK, Kotru PN, Sahni N (2003) Growth and characterization of pure Gd-heptamolybdate and mixed Gd-Ba-molybdate crystals, cryst. Growth Des 3:753–759. https://doi.org/10.1021/cg020042u

    Article  CAS  Google Scholar 

  15. Hao Y, Dong X, Zhai S, Wang X, Ma H, Zhang X (2016) Controllable self-assembly of a novel Bi2MoO6-based hybrid photocatalyst: excellent photocatalytic activity under UV, visible and near-infrared irradiation. Chem Commun 52:6525–6528. https://doi.org/10.1039/c6cc01303a

    Article  CAS  Google Scholar 

  16. Hao J, Wang X, Liu F, Han S, Lian J, Jiang Q (2017) Facile synthesis ZnS/ZnO/Ni(OH)2 composites grown on Ni foam: a bifunctional materials for photocatalysts and supercapacitors. Sci Rep 7:3021. https://doi.org/10.1038/s41598-017-03200-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu B, Kang X, Chen W, Yang F, Hu S (2011) Growth of molybdate nanorods through an intermediate sustained release process. CrystEngComm 13:1755–1758. https://doi.org/10.1039/c0ce00846j

    Article  CAS  Google Scholar 

  18. Jinlong L, Meng Y, Suzuki K, Miura H (2017) Synthesis of CoMoO4@RGO nanocomposites as high-performance supercapacitor electrodes. Microporous Mesoporous Mater 242:264–270. https://doi.org/10.1016/j.micromeso.2017.01.034

    Article  CAS  Google Scholar 

  19. Kianpour G, Salavati-Niasari M, Emadi H (2013) Precipitation synthesis and characterization of cobalt molybdates nanostructures. Superlattice Microst 58:120–129. https://doi.org/10.1016/j.spmi.2013.01.014

    Article  CAS  Google Scholar 

  20. Li M, Xu S, Cherry C, Zhu Y, Wu D, Zhang C, Zhang X, Huang R, Qi R, Wang L, Chu PK (2015) Hierarchical 3-dimensional CoMoO4 nanoflakes on a macroporous electrically conductive network with superior electrochemical performance. J Mater Chem A 3:13776–13785. https://doi.org/10.1039/c5ta02081f

    Article  CAS  Google Scholar 

  21. Li W, Wang X, Hu Y, Sun L, Gao C, Zhang C, Liu H, Duan M (2018) Hydrothermal synthesized of CoMoO4microspheres as excellent electrode material for supercapacitor. Nanoscale Res Lett 13:120. https://doi.org/10.1186/s11671-018-2540-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu M-C, Ma Kong X-J, Li X-M, Luo Y-C, Kang L (2012) Hydrothermal process for the fabrication of CoMoO4·0.9H2O nanorods with excellent electrochemical behavior. New J Chem 36:1713–1716. https://doi.org/10.1039/c2nj40278e

    Article  CAS  Google Scholar 

  23. Long H, Liu T, Zeng W, Yang Y, Zhao S (2018) CoMoO4 nanosheets assembled 3D-frameworks for high-performance energy storage. Ceram Int 44, 2:2446–2452

    Article  Google Scholar 

  24. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381. https://doi.org/10.1038/ncomms1387

    Article  CAS  PubMed  Google Scholar 

  25. Minakshi M, Barmi MJ, Jones RT (2017) Rescaling metal molybdate nanostructures with biopolymer for energy storage having high capacitance with robust cycle stability. DaltonTrans. 46:3588–3600. https://doi.org/10.1039/c7dt00139h

    Article  CAS  Google Scholar 

  26. Nayak AK, Lee S, Sohn Y, Pradhan D (2015) Biomolecule-assisted synthesis of In(OH)3 nano cubes and In2O3 nanoparticles: photocatalytic degradation of organic contaminants and CO oxidation. Nanotechnology 26:485601 (12 pp). https://doi.org/10.1088/0957-4484/26/48/485601

    Article  CAS  PubMed  Google Scholar 

  27. Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Zhao D, Xie S (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440–1446. https://doi.org/10.1039/c0ee00261e

    Article  CAS  Google Scholar 

  28. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Changwei S, Wei Q, Zhou L, Mai L (2017) Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun 8:14264. https://doi.org/10.1038/ncomms14264

    Article  PubMed  PubMed Central  Google Scholar 

  29. Park KS, Seo SD, Shim HW, Kim DW (2012) Electrochemical performance of NixCo1-x MoO4 (0≤ x≤ 1) nanowire anodes for lithium-ion batteries. Nanoscale Res Lett 7:35. https://doi.org/10.1186/1556-276X-7-35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ratha S, Samantara AK, Singha KK, Gangan AS, Chakraborty B, Jena BK, Rout CS (2017) Urea-assisted room temperature stabilized metastable β-NiMoO4: experimental and theoretical insights into its unique bifunctional activity toward oxygen evolution and supercapacitor. ACS Appl Mater Interfaces 9:9640–9653. https://doi.org/10.1021/acsami.6b16250

    Article  CAS  PubMed  Google Scholar 

  31. Rico JL, Ávalos-Borja M, Barrera A, Hargreaves JS (2013) Template-free synthesis of CoMoO4 rods and their characterization. J Mater Res Bull 48:4614–4617. https://doi.org/10.1016/j.materresbull.2013.07.007

    Article  CAS  Google Scholar 

  32. Rodriguez A, Chaturvedi S, Hanson C, Brito L (2002) Reduction of CoMoO4 and NiMoO4: in situ time-resolved XRD studies. Catal Lett 82:103. https://doi.org/10.1023/A:1020556528042

    Article  CAS  Google Scholar 

  33. Salinas-Torres D, Sieben JM, Lozano-Castelló D, Cazorla-Amorós D, Morallon E (2013) Asymmetric hybrid capacitors based on activated carbon and activated carbon fibre–PANI electrodes. Electrochim Acta 89:326–333. https://doi.org/10.1016/j.electacta.2012.11.039

    Article  CAS  Google Scholar 

  34. Schmitt P, Brem N, Schunk S, Feldmann C (2011) Polyol-mediated synthesis and properties of nanoscale molybdates/tungstates: color, luminescence, catalysis. Adv Funct Mater 21:3037–3046. https://doi.org/10.1002/adfm.201100655

    Article  CAS  Google Scholar 

  35. Shi H, Qi L, Ma J, Wu N (2005) Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles. Adv Funct Mater 15:442–450. https://doi.org/10.1002/adfm.200400242

    Article  CAS  Google Scholar 

  36. Subramani K, Sudhan N, Divya R, Sathish M (2017) All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv 7:6648–6659. https://doi.org/10.1039/c6ra27331a

    Article  CAS  Google Scholar 

  37. Veerasubraman GK, Krishnamoorthy K, Kim SJ (2015) Electrochemical performance of an asymmetric supercapacitor based on graphene and cobalt molybdate electrodes. RSC Adv 5:16319–16327. https://doi.org/10.1039/c4ra15070h

    Article  Google Scholar 

  38. Wang L, Peng B, Guo X, Ding W, Chen Y (2009) Ferric molybdate nanotubes synthesized based on the Kirkendall effect and their catalytic property for propene epoxidation by air. Chem Commun 2009:1565–1567. https://doi.org/10.1039/b820350d

    Article  CAS  Google Scholar 

  39. Wang X, Lu X, Liu B, Chen D, Tong Y, Shen G (2014) Flexible energy storage devices: design consideration and recent progress. Adv Mater 26(28):4763–4782. https://doi.org/10.1002/adma.201400910

    Article  CAS  PubMed  Google Scholar 

  40. Wang J, Zhang L, Liu X, Zhang X, Tian Y, Liu X, Zhao J, Li Y (2017) Assembly of flexible CoMoO4@ NiMoO4· xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci Rep 7:41088. https://doi.org/10.1038/srep41088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wiesmann M, Ehrenberg H, Wltschek G, Zinn P, Weitzel H, Fuess H (1995) Crystal and magnetic structure of α-NiMoO4. J Magn Magn Mater 150:371–376. https://doi.org/10.1016/0304-8853(95)00290-1

    Article  Google Scholar 

  42. Xu Z, Li Z, Tan X, Hol CM, Zhang L, Amirkhiz BS, Mitlin D (2012) Supercapacitive carbon nanotube-cobalt molybdate nanocomposites prepared via solvent-free microwave synthesis. RSC Adv 2:2753–2755. https://doi.org/10.1039/c2ra01300b

    Article  CAS  Google Scholar 

  43. Xu X, Shen J, Li N, Ye M (2014) Microwave-assisted synthesis of graphene/CoMoO4 nanocomposites with enhanced supercapacitor performance. J Alloys Compd 616:58–65. https://doi.org/10.1016/j.jallcom.2014.07.047

    Article  CAS  Google Scholar 

  44. Yan J, Wang Q, Wei T, Fan Z (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:1300816. https://doi.org/10.1002/aenm.201300816

    Article  CAS  Google Scholar 

  45. Yang X, Meng N, Zhu Y, et al (2016) Greatly improved mechanical and thermal properties of chitosan by carboxyl-functionalized MoS2 nanosheets. J Mater Sci 51:1344–1353. https://doi.org/10.1007/s10853-015-9453-7

  46. Zhang Z, Liu Y, Huang Z, Ren L, Qi X, Wei X, Zhong J (2015) Facile hydrothermal synthesis of NiMoO4@ CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys 17:20795–20804. https://doi.org/10.1039/c5cp03331d

    Article  CAS  PubMed  Google Scholar 

  47. Zhao Y, Teng F, Liu Z, Du Q, Xu J, Teng Y (2016) Electrochemical performances of asymmetric super capacitor fabricated by one-dimensional CoMoO4 nanostructure. Chem Phys Lett 664:23–28. https://doi.org/10.1016/j.cplett.2016.10.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Prof. D. Pradhan, Materials Science Centre, Indian Institute of Technology Kharagpur, India, for his kind help to carryout electrochemical and impedance study. RB is thankful to DST Inspire Division (Govt. of India) for their financial support. The financial support provided by Ministry of Earth Scince, India through GAP-001 is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The experimental work was done by BKS and RB. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mamata Mohapatra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satpathy, B.K., Barik, R., Padhy, A.K. et al. Synthesis of pH-moderated cobalt molybdate with bifunctional (photo catalyst and graphene-based supercapacitor) application. Ionics 26, 1443–1455 (2020). https://doi.org/10.1007/s11581-019-03339-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03339-0

Keywords

Navigation