Skip to main content

Advertisement

Log in

Improving the electrochemical performance of lithium Si batteries by multilayer porous carbon nanosheets/multi-walled carbon nanotubes composite inert nano-Ag

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, two-dimensional porous carbon nanosheets (PC)/one-dimensional multi-walled carbon nanotubes (MWCNTs) (PM) were used as carbon source supports, and AgNO3 was used as precursor. Si/Ag/PM composite was obtained by water bath reduction and calcination. The loading of nano-Ag improves the conductivity and stability of the Si-based anode. Inert metal nano-Ag can also catalyze the charging and discharging process of nano-Si. The three-dimensional interconnect structure of PM facilitates rapid electrical/ion transport and good electrolyte penetration, exhibits a highly Si-containing layered porous structure, and effectively enhances the physical constraints on soluble polysilicide. In addition, the three-dimensional interconnected layered porous structure and conductive network play a sufficient buffering role, and also help to inhibit the agglomeration of the nano-Ag particles. The lithium storage function of nano-Si is improved. The Initial coulombic efficiency (ICE) of the Si/Ag/PM electrode reached 78.9% at a current density of 0.1 A/g and maintained a specific discharge capacity of 706 mAh/g at a current density of 1 A/g with a capacity retention ratio of 68.6% after 300 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scrosati B, Hassoun J, Sun YK (2011) Lithium-ion batteries. A look into the future. Energy Environ Sci 4:3287–3295

    Article  CAS  Google Scholar 

  2. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  CAS  Google Scholar 

  3. Xu ZL, Kim JK, Kang K (2018) Carbon nanomaterials for advanced lithium sulfur batteries. Nano Today 19:84–107

    Article  CAS  Google Scholar 

  4. Wang J, Tang H, Zhang L, Ren H, Yu R, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P, Zhang Y, Wen Y, Gu L, Ma G, Su Z, Tang Z, Zhao H, Wang D (2016) Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat Energy 1:16050

    Article  CAS  Google Scholar 

  5. Wu H, Yu G, Pan L, Liu N, McDowell MT, Bao Z, Cui Y (2013) Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat Commun 4:1943

    Article  PubMed  CAS  Google Scholar 

  6. Eom KS, Lee JT, Oschatz M, Wu F, Kaskel S, Yushin G, Fuller TF (2017) A stable lithiated silicon–echalcogen battery via synergetic chemical coupling between silicon and selenium. Nat Commun 8:13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shelke MV, Gullapalli H, Kalaga K, Rodrigues MTF, Devarapalli RR, Vajtai R, Ajayan PM (2017) Facile synthesis of 3D anode assembly with Si nanoparticles sealed in highly pure few layer graphene deposited on porous current collector for long life Li-ion battery. Adv Mater Interfaces 4:1601043

    Article  CAS  Google Scholar 

  8. Zhang YC, You Y, Xin S, Yin YX, Zhang J, Wang P, Zheng X, Cao FF, Guo YG (2016) Rice husk-derived hierarchical silicon/nitrogen-doped carbon/carbon nanotube spheres as low-cost and high-capacity anodes for lithium-ionbatteries. Nano Energy 25:120–127

    Article  CAS  Google Scholar 

  9. Jangid MK, Sonia FJ, Kali R, Ananthoju B, Mukhopadhyay A (2017) Insights into the effects of multi-layered graphene as buffer/interlayer for a-Si during lithiation/delithiation. Carbon 111:602–616

    Article  CAS  Google Scholar 

  10. Kim YM, Ahn J, Yu SH, Chung DY, Lee KJ, Lee JK, Sung YE (2015) Titanium silicide coated porous silicon nanospheres as anode materials for lithium ion batteries. Electrochim Acta 151:256–262

    Article  CAS  Google Scholar 

  11. Wang T, Zhu J, Chen Y, Yang H, Qin Y, Li F, Cheng Q, Yu X, Xu Z, Lu B (2017) Large-scale production of silicon nanoparticles@ graphene embedded in nanotubes as ultra-robust battery anodes. J Mater Chem A 5:4809–4817

    Article  CAS  Google Scholar 

  12. Shim HC, Kim I, Woo CS, Lee HJ, Hyun S (2017) Nanospherical solid electrolyte interface layer formation in binder-free carbon nanotube aerogel/Si nanohybrids to provide lithium-ion battery anodes with long-cycle life and high capacity. Nanoscale 9:4713–4720

    Article  CAS  PubMed  Google Scholar 

  13. Xie J, Tong L, Su L, Xu Y, Wang L, Wang Y (2017) Core-shell yolk-shell Si@C@Void@C nanohybrids as advanced lithium ion battery anodes with good electronic conductivity and corrosion resistance. J Power Sources 342:529–536

    Article  CAS  Google Scholar 

  14. Xu ZL, Liu X, Luo Y, Zhou L, Kim JK (2017) Nanosilicon anodes for high performance rechargeable batteries. Prog Mater Sci 90:1–44

    Article  CAS  Google Scholar 

  15. Beak SH, Park JS, Jeong YM et al (2016) Facile synthesis of Ag-coated silicon nanowires as anode materials for high-performance rechargeable lithium battery[J]. J Alloys Compounds 660:387–391

    Article  CAS  Google Scholar 

  16. Cetinkaya T, Uysal M, Guler M, Akbulut H (2014) Developing lithium ion battery silicon/cobalt core-shell electrodes for enhanced electrochemical properties. Int J Hydrog Energy 39:21405e13

    Article  CAS  Google Scholar 

  17. LIU Y, CHEN B, CAO F et al (2011) One-pot synthesis of three-dimensional silver-embedded porous silicon micron particles for lithium-ion batteries[J]. J Mater Chem 21(43):17083–17086

    Article  CAS  Google Scholar 

  18. Bang BM, Kim H, Song HK et al (2011) Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching [J]. Energy Environ Sci 4(12):5013–5019

    Article  CAS  Google Scholar 

  19. Xiao CM, Du N, Shi XX et al (2014) Large-scale synthesis of Si@C three-dimensional porous structures as high-performance anode materials for lithium-ion batteries[J]. J Mater Chem A 2(48):20494–20499

    Article  CAS  Google Scholar 

  20. Tian H, Tan X, Xin F et al (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries[J]. Nano Energy 11:490–499

    Article  CAS  Google Scholar 

  21. He W, Tian H, Xin F et al (2015) Scalable fabrication of micro-sized bulk porous Si from Fe-Si alloy as a high performance anode for lithium-ion batteries[J]. J Mater Chem A 3(35):17956–17962

    Article  CAS  Google Scholar 

  22. Chen D, Mei X, Ji G et al (2012) Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles [J]. Angew Chem Int Ed Eng 51(10):2409–2413

    Article  CAS  Google Scholar 

  23. Zhang Z, Kong LL, Liu S, Li GR, Gao XP (2017) A high-efficiency sulfur/carbon composite based on 3D graphene Nanosheet@ carbon nanotube matrix as cathode for Lithium–sulfur battery. Adv Energy Mater 7(11):1602543

    Article  CAS  Google Scholar 

  24. Park HI, Sohn M, Kim DS, Park C, Choi JH (2016) Carbon nanofiber/3D nanoporous silicon hybrids as high capacity lithium storage materials. Chemsuschem 9:834e40

    Google Scholar 

  25. Tao H, Du S, Zhang F, Xiong L, Zhang Y, Ma H, Yang X (2018) Achieving a high-performance carbon anode through the P–O bond for Lithium-ion batteries. ACS Appl Mater Interfaces 10(40):34245–34253

    Article  CAS  PubMed  Google Scholar 

  26. Tao H, Fan LZ, Song WL, Wu M, He X, Qu X (2014) Hollow core–shell structured Si/C nanocomposites as high-performance anode materials for lithium-ion batteries[J]. Nanoscale 6(6):3138–3142

    Article  CAS  PubMed  Google Scholar 

  27. Treacy MJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381(6584):678

    Article  CAS  Google Scholar 

  28. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277(5334):1971–1975

    Article  CAS  Google Scholar 

  29. Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514

    Article  CAS  Google Scholar 

  30. Wang K, He X, Wang L, Ren J, Jiang C, Wan C (2007) Si, Si/cu core in carbon shell composite as anode material in lithium-ion batteries. Solid State Ionics 178(1–2):115–118

    Article  CAS  Google Scholar 

  31. Kong W, Yan L, Luo Y, Wang D, Jiang K, Li Q et al (2017) Ultrathin MnO /graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li–S batteries. Adv Funct Mater 27(18):1606663

    Article  CAS  Google Scholar 

  32. Zhang J, Yang CP, Yin YX, Wan LJ, Guo YG (2016) Sulfur encapsulated in graphitic carbon nanocages for high-rate and long-cycle lithium–sulfur batteries. Adv Mater 28(43):9539–9544

    Article  CAS  PubMed  Google Scholar 

  33. Zhang Z, Jing HK, Liu S, Li GR, Gao XP (2015) Encapsulating sulfur into a hybrid porous carbon/CNT substrate as a cathode for lithium–sulfur batteries. J Mater Chem A 3(13):6827–6834

    Article  CAS  Google Scholar 

  34. Zhao Y, Wu W, Li J, Xu Z, Guan L (2014) Encapsulating MWNTs into hollow porous carbon nanotubes: a tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26:5113–5118

    Article  CAS  PubMed  Google Scholar 

  35. Su D, Cortie M, Wang G (2017) Fabrication of N-doped graphene-carbon nanotube hybrids from Prussian blue for Lithium–sulfur batteries. Adv Energy Mater 7(8):1602014

    Article  CAS  Google Scholar 

  36. Fang X, Peng H (2015) A revolution in electrodes: recent progress in rechargeable lithium–sulfur batteries. Small 11(13):1488–1511

    Article  CAS  PubMed  Google Scholar 

  37. Tao H, Xiong L, Zhu S, Yang X, Zhang L (2016) Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for highperformance lithium ion batteries. Int J Hydrog Energy 41(46):21268–21277

    Article  CAS  Google Scholar 

  38. Xu DW, Xin S, You Y et al (2016) Built-in carbon nanotube network inside a biomass-derived hierarchically porous carbon to enhance the performance of the sulfur cathode in a Li-S battery[J]. ChemNanoMat 2(7):712–718

    Article  CAS  Google Scholar 

  39. Luo C, Niu S, Zhou G et al (2016) Dual-functional hard template directed one-step formation of a hierarchical porous carbon-carbon nanotube hybrid for lithium-sulfur batteries[J]. Chem Commun 52(82):121433–112146

    Article  CAS  Google Scholar 

  40. Lin N, Zhou J, Zhou J, Han Y, Zhu Y, Qian Y (2015) Synchronous synthesis of a Si/Cu/C ternary nano-composite as an anode for Li ion batteries. J Mater Chem A 3:17544–17548

    Article  CAS  Google Scholar 

  41. Tao H, Xiong L, Du S et al (2017) Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: an ultrahigh capacity and rate anode for Li and Na ion batteries [J]. Carbon 122:54–63

    Article  CAS  Google Scholar 

  42. Sun W, Wan L, Li X, Zhao X, Yan X (2016) Bean pod-like Si@ dopamine-derived amorphous carbon@ N-doped graphene nanosheet scrolls for high performance lithium storage. J Mater Chem A 4(28):10948–10955

    Article  CAS  Google Scholar 

  43. Yin YX, Xin S, Wan LJ, Li CJ, Guo YG (2011) Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. J Phys Chem C 115(29):14148–14154

    Article  CAS  Google Scholar 

  44. Zhang J, Zhang X, Zhang C, Liu Z, Zheng J, Zuo Y, Xue C, Li C, Cheng B (2017) Facile and efficient synthesis of a microsized SiOx/C core–shell composite as anode material for lithium ion batteries. Energy Fuel 31:8758–8763

    Article  CAS  Google Scholar 

  45. Kim J-S, Nguyen CC, Kim H-J, Song S-W (2014) Siloxane-capped amorphous nanoSiO x/graphite with improved dispersion ability and battery anode performance. RSC Adv 4:12878

    Article  CAS  Google Scholar 

  46. Yang Z, Xia Y, Ji J, Qiu B, Zhang K, Liu Z (2016) Superior cycling performance of a sandwich structure Si/C anode for lithium ion batteries. RSC Adv 6:12107–12113

    Article  CAS  Google Scholar 

  47. Kim J-S, Nguyen CC, Kim H-J, Song S-W (2014) Siloxane-capped amorphous nanoSiOx/graphite with improved dispersion ability and battery anode performance. RSC Adv 4:12878

    Article  CAS  Google Scholar 

  48. Shenouda AY, Liu HK (2010) Preparation, characterization, and electrochemical performance of Li CuSnO and Li CuSnSiO electrodes for lithium batteries. J Electrochem Soc 157(11):A1183–A1187

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Jiangxi scientific fund (20142BBE50071) and Jiangxi education fund (KJLD13006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Sun.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Sun, X. & Wei, C. Improving the electrochemical performance of lithium Si batteries by multilayer porous carbon nanosheets/multi-walled carbon nanotubes composite inert nano-Ag. Ionics 26, 1149–1158 (2020). https://doi.org/10.1007/s11581-019-03332-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03332-7

Keywords

Navigation