Skip to main content
Log in

A flexible LiFePO4/carbon nanotube/reduced graphene oxide film as self-supporting cathode electrode for lithium-ion battery

  • Brief Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

By a rational design and facile vacuum filtration, a flexible and free-standing LiFePO4/carbon nanotube/reduced graphene oxide film electrode is fabricated for lithium-ion batteries. The carbon nanotube and reduced graphene oxide substrates are favor of improving the conductivity of the electrode; meanwhile, the LiFePO4 particles can efficiently reduce aggregation between carbon nanotube and reduced graphene oxide. The resultant self-supporting LiFePO4/carbon nanotube/reduced graphene oxide electrode delivers excellent electrochemical performance beyond the metal-base electrode. After 100 cycles at 0.2 C, the capacity maintains 151 mAh g−1, nearly staying the same with initial value. Especially, at 10 C, the specific capacity still keeps 98 mAh g−1. Moreover, these findings in this work supply a means of manufacturing LiFePO4 electrode and urge the practical application of LiFePO4 in flexible facilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Kortuem G, Kawsar F, Sundramoorthy V, Fitton D (2010) Smart objects as building blocks for the internet of things. IEEE Internet Comput 14:44–51

    Article  Google Scholar 

  2. Wei W, Yang SB, Zhou HX, Lieberwirth I, Feng XL, Müllen K (2013) 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv Mater 25:2909–2914

    Article  CAS  PubMed  Google Scholar 

  3. Nishide H, Oyaizu K (2008) Toward flexible batteries. Science 319:737–738

    Article  CAS  PubMed  Google Scholar 

  4. Zhang XY, Xu W, Liu WY, Li X, Zhong XX, Lin YH (2018) TinO2n-1-coated Li4Ti5O12 composite anode material for lithium-ion batteries. JOM 70:1383–1386

    Article  CAS  Google Scholar 

  5. Zhang XY, Zhong XX, Xu W, Li X, Liu WY, Lin YH (2018) Preparation and electrochemical properties of Li4Ti5O12/Ti4O7 composite for lithium-ion batteries. Ionics 24:379–384

    Article  CAS  Google Scholar 

  6. Cao SM, XF SYY, Xue X, Liu HJ, Miao M, Fang JH, Shi LY (2015) Integrated fast assembly of free-standing lithium titanate/carbon nanotube/cellulose nanofiber hybrid network film as flexible paper-electrode for lithium-ion batteries. ACS Appl Mater Interfaces 7:10695–10701

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, He ZY, Wang YX, Fan C, Liu CRL, Peng QL, Chen JJ, Feng ZS (2018) Preparation and characterization of flexible lithium iron phosphate/graphene/cellulose electrode for lithium ion batteries. J Colloid Interface Sci 512:398–403

    Article  CAS  PubMed  Google Scholar 

  8. Maleki H, Deng GP, Haller IK, Anani A, Howard JN (2000) Thermal stability studies of binder materials in anodes for lithium-ion batteries. J Electrochem Soc 147:4470–4475

    Article  CAS  Google Scholar 

  9. Nnorom IC, Osibanjo O (2009) Heavy metal characterization of waste portable rechargeable batteries used in mobile phones. Int J Environ Sci Technol 6:641–650

    Article  CAS  Google Scholar 

  10. Wang K, Luo S, Wu Y, He XF, Zhao F, Wang JP, Jiang KL, Fan SS (2013) Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries. Adv Funct Mater 23:846–853

    Article  CAS  Google Scholar 

  11. Song S, Kim SW, Lee DJ, Lee YG, Kim KM, Kim CH, Park JK, Lee YM, Cho KY (2014) Flexible binder-free metal fibril mat-supported silicon anode for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 6:11544–11549

    Article  CAS  PubMed  Google Scholar 

  12. Wang B, Wang DL, Wang QM, Liu TF, Guo CF, Zhao XS (2013) Improvement of the electrochemical performance of carbon-coated LiFePO4 modified with reduced graphene oxide. J Mater Chem A 1:135–144

    Article  CAS  Google Scholar 

  13. Wu XL, Guo YG, Su J, Xiong JW, Zhang YL, Wan LJ (2013) Carbon-nanotube-decorated nano-LiFePO4@C cathode material with superior high-rate and low-temperature performances for lithium-ion batteries. Adv Energy Mater 3:1155–1160

    Article  CAS  Google Scholar 

  14. Qin GH, Wu QP, Zhao J, Ma QQ, Wang CY (2014) C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries. J Power Sources 248:588

    Article  CAS  Google Scholar 

  15. Yu F, Zhang JJ, Yang YF, Song GZ (2010) Porous micro-spherical aggregates of LiFePO4/C nanocomposites: a novel and simple template-free concept and synthesis via sol–gel-spray drying method. J Power Sources 195:6873–6878

    Article  CAS  Google Scholar 

  16. Sun CW, Rajasekhara S, Goodenough JB, Zhou F (2011) Mondisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. J Am Chem Soc 133:2132–2135

    Article  CAS  PubMed  Google Scholar 

  17. Kim K, Jeong JH, Kim IJ, Kim HS (2007) Carbon coatings with olive oil, soybean oil and butter on nano-LiFePO4. J Power Sources 167:524–528

    Article  CAS  Google Scholar 

  18. Jin EM, Jin B, Jun DK, Park KH, Gu HB, Kim KW (2008) A study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method. J Power Sources 178:801–806

    Article  CAS  Google Scholar 

  19. Ding YH, Ren HM, Huang YY, Chang FH, Zhang P (2013) Three-dimensional graphene/LiFePO4 nanostructures as cathode materials for flexible lithium-ion batteries. Mater Res Bull 48:3713–3716

    Article  CAS  Google Scholar 

  20. Chen Y, Lu Z, Zhou L, Mai YW, Huang H (2012) In situ formation of hollow graphitic carbon nanospheres in electrospun amorphous carbon nanofibers for high-performance Li-based batteries. Nanoscale 4:6800–6805

    Article  CAS  PubMed  Google Scholar 

  21. An CS, Zhang B, Tang L, Xiao B, Zheng JC (2018) Ultrahigh rate and long-life nano-LiFePO4 cathode for Li-ion batteries. Electrochim Acta 283:385–392

    Article  CAS  Google Scholar 

  22. Kanagaraj AB, Chaturvedi P, Alkindi TS, Susantyoko RA (2018) Mechanical, thermal and electrical properties of LiFePO4/MWCNTs composite electrodes. Mater Lett 230:57–60

    Article  CAS  Google Scholar 

  23. Candelaria SL, Shao Y, Zhou W, Li X, Xiao J, Zhang J, Wang Y, Liu J, Li J, Cao G (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1:195–220

    Article  CAS  Google Scholar 

  24. Wang YY, Wang ZJ, Yu XL, Li BH, Kang FY, He YB (2018) Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. J Mater Res 33:1058–1073

    Article  CAS  Google Scholar 

  25. Zhang XY, Xu W, Li X, Zhong XX, Liu WY, Lin YH, Xia RC (2018) Li4Ti5O12/Ti4O7/carbon nanotubes composite anode material for lithium-ion batteries. Micro & Nano Lett 13:915–918

    Article  CAS  Google Scholar 

  26. Zhang XY, Zhang HZ, Lin ZQ, Yu MH, Lu XH, Tong YX (2016) Recent advances and challenges of stretchable supercapacitors based on carbon materials. SCMs 59:475–494

    CAS  Google Scholar 

  27. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  28. Shi QR, Cha Y, Song Y, Lee JI, Zhu CZ, Li XY, Song MK, Du D, Lin YH (2016) 3D graphene-based hybrid materials: synthesis and applications in energy storage and conversion. Nanoscale 8:15414–15447

    Article  CAS  PubMed  Google Scholar 

  29. Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331

    Article  CAS  PubMed  Google Scholar 

  30. Nagaraju DH, Kuezma M, Suresh GS (2015) LiFePO4 wrapped reduced graphene oxide for high performance Li-ion battery electrode. J Mater Sci 50:4244–4249

    Article  CAS  Google Scholar 

  31. Wang B, Wang D, Wang Q (2012) Improvement of the electrochemical performance of carbon-coated LiFePO4 modified with reduced graphene oxide. J Mater Chem 1:135–144

    Article  Google Scholar 

  32. Woon OS, Huang ZD, Zhang B (2012) Low temperature synthesis of graphene-wrapped LiFePO4 nanorod cathodes by the polyol method. J Mater Chem A 22:17215–17221

    Article  CAS  Google Scholar 

  33. Song Y, Chen CH, Wang CL (2015) Graphene/enzyme-encrusted three-dimensional carbon micropillar arrays for mediatorless micro-biofuel cells. Nanoscale 7:7084–7090

    Article  CAS  PubMed  Google Scholar 

  34. Wei L, Jiang WC, Yuan Y, Goh KL, Yu DS, Wang L, Chen Y (2015) Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor. J Solid State Chem 224:45–51

    Article  CAS  Google Scholar 

  35. Zhu KX, Gao HY, Hu GX (2018) A flexible mesoporous Li4Ti5O12-rGO nanocomposite film as free-standing anode for high rate lithium ion batteries. J power Sources 375:59–67

    Article  CAS  Google Scholar 

  36. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P (2010) Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Fuller Nanotub Car N 12:10–13

    CAS  Google Scholar 

  37. Kadoma Y, Kim JM, Abiko K, Ohtsuki K, Ui K, Kumagai N (2010) Optimization of electrochemical properties of LiFePO4/C prepared by an aqueous solution method using sucrose. Electrochim Acta 55:1034–1041

    Article  CAS  Google Scholar 

  38. Fouda A, Assy MA, Enany GE, Yousf N (2015) Enhanced capacitance of thermally reduced hexagonal graphene oxide for high performance supercapacitor, Fullerenes Nanotub. Carbon Nanostruct 23:618–622

    Article  CAS  Google Scholar 

  39. Chen X, Meng D, Wang B, Li BW, Li W, Bielawski CW, Ruoff RS (2016) Rapid thermal decomposition of confined graphene oxide films in air. Carbon 101:71–76

    Article  CAS  Google Scholar 

  40. Li X, Tang Y, Song JH, Yang W, Wang MS, Zhu CZ, Zhao WG, Zheng JM, Lin YH (2018) Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor. Carbon 129:236–244

    Article  CAS  Google Scholar 

  41. Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochem Commun 7:983–988

    Article  CAS  Google Scholar 

  42. Paques-Ledent MT, Tarte P (1974) Vibrational studies of olivine-type compounds-II Orthophosphates, -arsenates and -vanadates AIBIIXVO4. Spectrochim Acta A: Mol Spectrosc 30:673–689

    Article  Google Scholar 

  43. Muruganantham R, Sivakumar M, Subadevi R, Wu NL (2015) A facile synthesis and characterization of LiFePO4/C using simple binary reactants with oxalic acid by polyol technique and other high temperature methods. J Mater Sci Mater Electron 26:2095–2106

    Article  CAS  Google Scholar 

  44. Lu XJ, Dou H, Gao B, Yuan CZ, Yang SD, Hao L, Shen LF, Zhang XG (2011) A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochim Acta 56:5115–5121

    Article  CAS  Google Scholar 

  45. Markevich E, Sharabi R, Haik O, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt MA, Schall N, Stinner C (2011) Raman spectroscopy of carbon-coated LiCoPO4 and LiFePO4 olivines. J Power Sources 196:6433–6439

    Article  CAS  Google Scholar 

  46. Feng JP, Wang YL (2016) High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries. Appl Surf Sci 390:481–488

    Article  CAS  Google Scholar 

  47. Naik A, Zhou J, Gao C, Liu GZ, Wang L (2016) Rapid and facile synthesis of Mn doped porous LiFePO4/C from iron carbonyl complex. J Energy Inst 89:21–29

    Article  CAS  Google Scholar 

  48. Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P, Masquelier C, Tarascon JM (2006) Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem Mater 18(23):5520–5529

    Article  CAS  Google Scholar 

  49. Liu Y, Zhang M, Li Y, Hu YM, Zhu MY, Jin HM (2015) Nano-sized LiFePO4/C composite with core-shell structure as cathode material for lithium ion battery. Electrochim Acta 176:689–693

    Article  CAS  Google Scholar 

  50. Gong H, Xue HR, Wang T, He JP (2016) In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries. J Power Sources 318:220–227

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by The Open Fund Project from Southwest Petroleum University (KSZ18507).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyan Zhang or Wen Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, Y., Lin, Y. et al. A flexible LiFePO4/carbon nanotube/reduced graphene oxide film as self-supporting cathode electrode for lithium-ion battery. Ionics 26, 1537–1546 (2020). https://doi.org/10.1007/s11581-019-03328-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03328-3

Keywords

Navigation