Skip to main content

Advertisement

Log in

Synthesis of three-dimensional nitrogen/sulfur-co-doped graphene hydrogels at low temperature and atmospheric pressure for supercapacitor materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Heteroatom doping and three-dimensional (3D) porous structures are critical to the performance of graphene supercapacitor electrode materials. However, the conventional methods, such as chemical vapor deposition (CVD) and hydrothermal synthesis, require tedious processes and harsh conditions. In this work, we describe a very simple and efficient approach to fabricate a 3D nitrogen/sulfur-co-doped porous graphene hydrogel (3DNS-GH). It is found that thiourea can reduce graphene oxide (GO) obtaining 3DNS-GHs at low temperature and atmospheric pressure by adjusting the pH value, because the reducibility of thiourea significantly increases in acidic or alkaline media. Furthermore, the amount of nitrogen and sulfur doping and nano-pore structure varies with the pH value of solution. The 3DNS-GH exhibits uniform pore structure and can be directly used as electrode materials without additive binder. The binder-free electrode based on the optimum operating conditions (3DNS-GH-12) exhibit a high specific capacitance of 259.2 F g−1 and retain 96.0% of its initial capacitance after 10,000 cycles in 2 M KOH solution at 10 A g−1. Additionally, the symmetrical supercapacitor assembled by the 3DNS-GH-12 showed an impressive energy density of 6.08 W h kg−1 and a high power density of 7.51 kW kg−1. Therefore, these materials demonstrate excellent performance, indicating this route possess potential applied value in the production of supercapacitor electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang Y, Song Y, Xia Y (2016) Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chem Soc Rev45(21):5925–5950

    Article  CAS  Google Scholar 

  2. Hou ZX, Li GB, Wang SH, Wang MH, Hu XD, Zhou Y, Li SM (2014) Adv Mater Res989-994:337

    Article  Google Scholar 

  3. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett8(10):3498–3502

    Article  CAS  Google Scholar 

  4. Si Y, Samulski ET (2008) Chem Mater20(21):6792

    Article  CAS  Google Scholar 

  5. Cao X, Yin Z, Zhang H (2014) Energy Environ Sci7(6):1850

    Article  CAS  Google Scholar 

  6. Xu Y, Shi G, Duan X (2015) Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors. Acc Chem Res48(6):1666–1675

    Article  CAS  Google Scholar 

  7. Kong XK, Chen CL, Chen QW (2014) Doped graphene for metal-free catalysis. Chem Soc Rev43(8):2841–2857

    Article  CAS  Google Scholar 

  8. Paraknowitsch JP, Thomas A (2013) Energy Environ Sci6:10

    Article  Google Scholar 

  9. Wang H, Maiyalagan T, Wang X (2012) ACS Catal2(5):781

    Article  CAS  Google Scholar 

  10. Yu X, Kang Y, Park HS (2016) Carbon101:49

    Article  CAS  Google Scholar 

  11. Liao Y, Huang Y, Shu D, Zhong Y, Hao J, He C, Zhong J, Song X (2016) Electrochim Acta194:136

    Article  CAS  Google Scholar 

  12. Gopalsamy K, Balamurugan J, Thanh TD, Kim NH, Lee JH (2017) Chem Eng J312:180

    Article  CAS  Google Scholar 

  13. Chen Y, Liu Z, Sun L, Lu Z, Zhuo K (2018) J Power Sources390:215

    Article  CAS  Google Scholar 

  14. Xu C, Su Y, Liu D, He X (2015) Three-dimensional N,B-doped graphene aerogel as a synergistically enhanced metal-free catalyst for the oxygen reduction reaction. Phys Chem Chem Phys17(38):25440–25448

    Article  CAS  Google Scholar 

  15. Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, Dai L (2012) BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew Chem Int Ed Eng51(17):4209–4212

    Article  CAS  Google Scholar 

  16. Zheng Y, Jiao Y, Ge L, Jaroniec M, Qiao SZ (2013) Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Eng52(11):3110–3116

    Article  CAS  Google Scholar 

  17. Bepete G, Voiry D, Chhowalla M, Chiguvare Z, Coville NJ (2013) Incorporation of small BN domains in graphene during CVD using methane, boric acid and nitrogen gas. Nanoscale5(14):6552–6557

    Article  CAS  Google Scholar 

  18. Xue Y, Yu D, Dai L, Wang R, Li D, Roy A, Lu F, Chen H, Liu Y, Qu J (2013) Three-dimensional B,N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys Chem Chem Phys15(29):12220–12226

    Article  CAS  Google Scholar 

  19. Zhang W, Chen Z, Guo X, Jin K, Wang Y, Li L, Zhang Y, Wang Z, Sun L, Zhang T (2018) Electrochim Acta278:51

    Article  CAS  Google Scholar 

  20. Wang T, Wang LX, Wu DL, Xia W, Jia DZ (2015) Sci Rep5:9591

    Article  CAS  Google Scholar 

  21. Ke Q, Wang J (2016) J Mater2(1):37

    Google Scholar 

  22. Shih CJ, Lin S, Sharma R, Strano MS, Blankschtein D (2012) Understanding the pH-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir28(1):235–241

    Article  CAS  Google Scholar 

  23. Li J, Zhang G, Fu C, Deng L, Sun R, Wong C-P (2017) J Power Sources345:146

    Article  CAS  Google Scholar 

  24. Ai W, Luo Z, Jiang J, Zhu J, Du Z, Fan Z, Xie L, Zhang H, Huang W, Yu T (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance li-ion batteries and oxygen reduction reaction. Adv Mater26(35):6186–6192

    Article  CAS  Google Scholar 

  25. Lin D, Liu Y, Liang Z, Lee HW, Sun J, Wang H, Yan K, Xie J, Cui Y (2016) Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat Nanotechnol11(7):626–632

    Article  CAS  Google Scholar 

  26. Li J, Qin W, Xie J, Lei H, Zhu Y, Huang W, Xu X, Zhao Z, Mai W (2018) Nano Energy53:415

    Article  CAS  Google Scholar 

  27. Bosch-Navarro C, Coronado E, Marti-Gastaldo C, Sanchez-Royo JF, Gomez MG (2012) Influence of the pH on the synthesis of reduced graphene oxide under hydrothermal conditions. Nanoscale4(13):3977–3982

    Article  CAS  Google Scholar 

  28. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc131(31):11027–11032

    Article  CAS  Google Scholar 

  29. Zhu Y, Murali S, Stoller MD et al (2011) Science332(6037):1537

    Article  CAS  Google Scholar 

  30. Li H, Tao Y, Zheng X, Li Z, Liu D, Xu Z, Luo C, Luo J, Kang F, Yang QH (2015) Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale7(44):18459–18463

    Article  CAS  Google Scholar 

  31. Song B, Sizemore C, Li L, Huang X, Lin Z, Moon K-s, Wong C-P (2015) J Mater Chem A3(43):21789

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Educational Committee of Hebei Province (No. ZD2017214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 930 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Zhang, X., Zhang, W. et al. Synthesis of three-dimensional nitrogen/sulfur-co-doped graphene hydrogels at low temperature and atmospheric pressure for supercapacitor materials. Ionics 26, 1407–1417 (2020). https://doi.org/10.1007/s11581-019-03322-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03322-9

Keywords

Navigation