Skip to main content
Log in

Enhanced electrochemical performance of La and F co-modified Ni-rich cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

With the development of the times, the energy density of cathodes can no longer meet the requirement of the society, which has greatly limited the commercialization process of Ni-rich cathodes. Doping combined with coating is a perfect approach to improve the performance of Ni-rich cathodes. In this paper, La was used as a modified element to realize doping in the layered host structure as well as La2O3 coating on the surface. To further enhance the interface stability of LiNi0.8Co0.1Mn0.1O2, F was also employed to modify the surface, so as to change the coating layer from oxide (La2O3) to fluoride (LaF3), which further improved the surface stability. Additionally, a series of testing instruments, including XRD, EDS mapping, and HRTEM, were employed, which suggested that a small amount of La was introduced into the host structure as a pillar to the stable layered structure, and there was an uniform LaF3 coating layer covered on the Ni-rich cathodes. As a result, the electrochemical performance of the cathodes was greatly improved, with the capacity retention of 86.63% and 80.79% after 200 cycles at 1 C rate and 300 cycles at 8 C rate, respectively; besides, the kinetics of lithium diffusion was also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang J-N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X-Q, Huang X, Chen L, Li H (2019) Nat Energy

  2. Ryu HH, Park GT, Yoon CS, Sun YK (2018) Small 14(45):e1803179

    Article  Google Scholar 

  3. Tsai P-C, Wen B, Wolfman M, Choe M-J, Pan MS, Su L, Thornton K, Cabana J, Chiang Y-M (2018) Energy Environ Sci 11(4):860

    Article  CAS  Google Scholar 

  4. Wei Y, Zheng J, Cui S, Song X, Su Y, Deng W, Wu Z, Wang X, Wang W, Rao M, Lin Y, Wang C, Amine K, Pan F (2015) Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2. J Am Chem Soc 137(26):8364–8367

    Article  CAS  Google Scholar 

  5. Zhao J, Wang Z, Wang J, Guo H, Li X, Gui W, Chen N, Yan G (2018) Energy Technol

  6. Hoon-Hee R, Kang-Joon P, Chong SY, Yang-Kook S (2018) Chem Mater

  7. Myung S-T, Maglia F, Park K-J, Yoon CS, Lamp P, Kim S-J, Sun Y-K (2017) Acs Energy Lett 2(1):196

    Article  CAS  Google Scholar 

  8. Guo R, Shi P, Cheng X, Sun L (2009) Electrochim Acta 54(24):5796

    Article  CAS  Google Scholar 

  9. Wu F, Tian J, Su Y, Wang J, Zhang C, Bao L, He T, Li J, Chen S (2015) ACS Appl Mater Interfaces 7(14):7702

    Article  CAS  Google Scholar 

  10. Xu Y-D, Xiang W, Wu Z-G, Xu C-L, Li Y-C, Guo X-D, Lv G-P, Peng X, Zhong B-H (2018) Electrochim Acta 268:358

    Article  CAS  Google Scholar 

  11. Yang Z, Guo X, Xiang W, Hua W, Zhang J, He F, Wang K, Xiao Y, Zhong B (2017) J Alloys Compd 699:358

    Article  CAS  Google Scholar 

  12. Qiu L, Xiang W, Tian W, Xu C-L, Li Y-C, Wu Z-G, Chen T-R, Jia K, Wang D, He F-R, Guo X-D (2019) Nano Energy 63:103818

    Article  CAS  Google Scholar 

  13. Hou P, Zhang H, Deng X, Xu X, Zhang L (2017) Stabilizing the Electrode/Electrolyte Interface of LiNi<sub>0.8</sub>Co<sub>0.15</sub>Al<sub>0.05</sub>O<sub>2</sub> through Tailoring Aluminum Distribution in Microspheres as Long-Life, High-Rate, and Safe Cathode for Lithium-Ion Batteries. ACS Appl Mater Interfaces 9(35):29643–29653

    Article  CAS  Google Scholar 

  14. Yi H, Hu C, He X, Xu H (2015) Ionics 21(3):667

    Article  CAS  Google Scholar 

  15. Bie XF, Yang X, Han B, Chen N, Liu LN, Wei YJ, Wang CZ, Chen H, Du F, Chen G (2013) J Alloys Compd 572:79

    Article  CAS  Google Scholar 

  16. Du K, Huang JL, Cao YB, Peng ZD, Hu GR (2013) J Alloys Compd 574:377

    Article  CAS  Google Scholar 

  17. Xiang W, Zhu C-Q, Zhang J, Shi H, Liang Y-T, Yu M-H, Zhu X-M, He F-R, Lv G-P, Guo X-D (2019) J Alloys Compd 786:56

    Article  CAS  Google Scholar 

  18. Xu C, Xiang W, Wu Z, Xu Y, Li Y, Wang Y, Xiao Y, Guo X, Zhong B (2019) ACS Appl Mater Interfaces 11(18):16629

    Article  CAS  Google Scholar 

  19. Xu CL, Xiang W, Wu ZG, Xu YD, Li YC, Chen MZ, XiaoDong G, Lv GP, Zhang J, Zhong BH (2018) ACS Appl Mater Interfaces

  20. Li Y-C, Xiang W, Wu Z-G, Xu C-L, Xu Y-D, Xiao Y, Yang Z-G, Wu C-J, Lv G-P, Guo X-D (2018) Electrochim Acta 291:84

    Article  CAS  Google Scholar 

  21. Li J, Yao R, Cao C (2014) ACS Appl Mater Interfaces 6(7):5075

    Article  CAS  Google Scholar 

  22. Wang Z, Liu H, Wu J, Lau W-M, Mei J, Liu H, Liu G (2016) RSC Adv 6(38):32365

    Article  CAS  Google Scholar 

  23. Yuefeng S, Gang C, Lai C, Weikang L, Qiyu Z, Zhiru Y, Yun L, Liying B, Jing T, Renjie C, Shi C, Feng W (2018) ACS Appl Mater Interfaces

  24. Ju X, Huang H, He W, Zheng H, Deng P, Li S, Qu B, Wang T (2018) ACS Sustain Chem Eng 6(5):6312

    Article  CAS  Google Scholar 

  25. Ming-Shan W, Jia W, Jian Z, Li-Zhen F (2015) Ionics 21(1):27

    Article  Google Scholar 

  26. Xiang W, Liu W-Y, Zhang J, Wang S, Zhang T-T, Yin K, Peng X, Jiang Y-C, Liu K-H, Guo X-D (2019) J Alloys Compd 775:72

    Article  CAS  Google Scholar 

  27. Xu C-L, Xiang W, Wu Z-G, Xu Y-D, Li Y-C, Li H-T, Xiao Y, Tan B-C, Guo X-D, Zhong B-H (2019) J Alloys Compd 777:434

    Article  CAS  Google Scholar 

  28. Yang Z, Xiang W, Wu Z, He F, Zhang J, Xiao Y, Zhong B, Guo X (2017) Ceram Int 43(4):3866

    Article  CAS  Google Scholar 

  29. Hou P, Yin J, Ding M, Huang J, Xu X (2017) Small 13(45)

  30. Chong SY, Min-Jae C, Do-Wook J, Qian Z, Payam K, Kwang-Ho K, Yang-Kook S (2018) Chem Mater

  31. Yue P, Wang Z, Guo H, Xiong X, Li X (2013) Electrochim Acta 92:1

    Article  CAS  Google Scholar 

  32. Binghong H, Baris K, Saul HL, Juan CG, Hakim I, John TV, Fulya D (2017) ACS Appl Mater Interfaces

  33. Tang M, Yang J, Chen N, Zhu S, Wang X, Wang T, Zhang C, Xia Y (2019) J Mater Chem A 7(11):6080

    Article  CAS  Google Scholar 

  34. Yang H, Wu HH, Ge M, Li L, Yuan Y, Yao Q, Chen J, Xia L, Zheng J, Chen Z, Duan J, Kisslinger K, Zeng XC, Lee WK, Zhang Q, Lu J (2019) Adv Funct Mater 1808825

  35. Zhou Y, Lee Y, Sun H, Wallas JM, George SM, Xie M (2017) ACS Appl Mater Interfaces 9(11):9614

    Article  CAS  Google Scholar 

  36. Xu C-L, Xiang W, Wu Z-G, Li Y-C, Xu Y-D, Hua W-B, Guo X-D, Zhang X-B, Zhong B-H (2018) J Alloys Compd 740:428

    Article  CAS  Google Scholar 

  37. Li Y-C, Zhao W-M, Xiang W, Wu Z-G, Yang Z-G, Xu C-L, Xu Y-D, Wang E-H, Wu C-J, Guo X-D (2018) J Alloys Compd 766:546

    Article  CAS  Google Scholar 

  38. Kong JZ, Wang SS, Tai GA, Zhu L, Wang LG, Zhai HF, Wu D, Li AD, Li H (2016) J Alloys Compd 657:593

    Article  CAS  Google Scholar 

  39. Liang LW, Hu GR, Jiang F, Cao YB (2016) J Alloys Compd 657:570

    Article  CAS  Google Scholar 

  40. Wang WL, Yin ZL, Wang JP, Wang ZX, Li XH, Guo HJ (2015) J Alloys Compd 651:737

    Article  CAS  Google Scholar 

  41. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) J Power Sources 343:345

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhang, T., Zhang, Q. et al. Enhanced electrochemical performance of La and F co-modified Ni-rich cathode. Ionics 26, 1165–1171 (2020). https://doi.org/10.1007/s11581-019-03316-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03316-7

Keywords

Navigation