Skip to main content

Advertisement

Log in

Hydrothermal activated carbon cloth as electrode materials for symmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Activated commercial carbon cloth (ACC) was prepared by a facile hydrothermal process using a low concentration of hydrogen peroxide as the solvent. Microcracks, mesopores, and oxygen-containing functional groups were formed on the surface of ACC, which significantly enhanced the electrochemical properties for ACC. The ACC showed the high areal-specific capacitance, good rate capability, and excellent cycling stability in the three-electrode system. And the ACC exhibited satisfactory charging–discharging. Furthermore, the symmetric supercapacitor based on the ACC exhibited an areal-specific capacitance of 549.3 mF/cm2 and achieved an energy density of 1.29 mWh/cm3 at a power density of 533.02 mW/cm3 and a high power density of 618.16 mW/cm3 at an energy density of 0.61 mWh/cm3, respectively. Moreover, the outstanding capacitive performance reveals that ACC could be considered as a competitive potential candidate as an electrode for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chodankar NR, Ji SH, Kim DH (2018) Surface modified carbon cloth via nitrogen plasma for supercapacitor applications. J Electrochem Soc 165(11):A:2446–AA2450

    Article  CAS  Google Scholar 

  2. Dubal DP, Chodankar NR, Kim DH, Gomez-Romero P (2018) Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem Soc Rev 47(6):2065–2129

    Article  CAS  PubMed  Google Scholar 

  3. Xu WN, Zhao KN, Huo WC, Wang YZ, Yao G, Gu X, Cheng HW, Mai LQ, Hu CG, Wang XD (2019) Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy 62:275–281

    Article  CAS  Google Scholar 

  4. Soultati A, Kostis I, Argitis P, Dimotikali D, Kennou S, Gardelis S, Speliotis T, Kontos AG, Davazoglou D, Vasilopoulou M (2016) Dehydration of molybdenum oxide hole extraction layers via microwave annealing for the improvement of efficiency and lifetime in organic solar cells. J Mater Chem C 4(32):7683–7694

    Article  CAS  Google Scholar 

  5. Wu XM, Meng L, Wang QG, Zhang WZ, Wang Y (2019) Highly flexible and large areal/volumetric capacitances for asymmetric supercapacitor based on ZnCo2O4 nanorods arrays and polypyrrole on carbon cloth as binder-free electrodes. Mater Lett 234:1–4

    Article  CAS  Google Scholar 

  6. Zhao DY, Zhu QC, Chen DJ, Li X, Yu Y, Huang XT (2018) Nest-like V3O7 self-assembled by porous nanowires as an anode supercapacitor material and its performance optimization through bonding with N-doped carbon. J Mater Chem A 6(34):16475–16484

    Article  CAS  Google Scholar 

  7. Zhai T, Xie SL, Yu MH, Fang PP, Liang CL, Lu XH, Tong YX (2014) Oxygen vacancies enhancing capacitive properties of MnO2 nanorods for wearable asymmetric supercapacitors. Nano Energy 8:255–263

    Article  CAS  Google Scholar 

  8. Ouyang T, Cheng K, Yang F, Jiang JT, Yan J, Zhu K, Ye K, Wang GL, Zhou LM, Cao DX (2018) A general in-situ etching and synchronous heteroatom doping strategy to boost the capacitive performance of commercial carbon fiber cloth. Chem Eng J 335:638–646

    Article  CAS  Google Scholar 

  9. Xu WN, Wan J, Huo WC, Yang Q, Li YR, Zhang CL, Gu X, Hu CG (2018) Sodium ions pre-intercalation stabilized tunnel structure of Na2Mn8O16 nanorods for supercapacitors with long cycle life. Chem Eng J 354:1050–1057

    Article  CAS  Google Scholar 

  10. Guo M, Zhou YN, Sun H, Zhang GX, Wang YQ (2019) Interconnected polypyrrole nanostructure for high-performance all-solid-state flexible supercapacitor. Electrochim Acta 298:918–923

    Article  CAS  Google Scholar 

  11. Jin X, Wang H, Liu YM, Wang HJ, Wang WY, Lin T (2019) Hydrogen-bonding power interfacial load transfer of carbon fabric/polypyrrole composite pseudosupercapacitor electrode with improved electrochemical stability. Appl Surf Sci 470:783–791

    Article  CAS  Google Scholar 

  12. Li JP, Xiao DS, Ren YQ, Liu HR, Chen ZX, Xiao JM (2019) Bridging of adjacent graphene/polyaniline layers with polyaniline nanofibers for supercapacitor electrode materials. Electrochim Acta 300:193–201

    Article  CAS  Google Scholar 

  13. Li X, Sun C, Cai ZS, Ge FY (2019) High-performance all-solid-state supercapacitor derived from PPy coated carbonized silk fabric. Appl Surf Sci 473:967–975

    Article  CAS  Google Scholar 

  14. Wang JY, Zhang XT, Zhang Y, Abas A, Zhao XH, Yang ZW, Su Q, Lan W, Xie EQ (2017) Lightweight, interconnected VO2 nanoflowers hydrothermally grown on 3D graphene networks for wide-voltage-window supercapacitors. RSC Adv 7(56):35558–35564

    Article  CAS  Google Scholar 

  15. Wang W, Liu WY, Zeng YX, Han Y, Yu MH, Lu XH, Tong YX (2015) A novel exfoliation strategy to significantly boost the energy storage capability of commercial carbon cloth. Adv Mater 27(23):3572–3578

    Article  CAS  PubMed  Google Scholar 

  16. Xie SL, Liu S, Cheng FL, Lu XH (2018) Recent advances toward achieving high-performance carbon-fiber materials for supercapacitors. ChemElectroChem 5(4):571–582

    Article  CAS  Google Scholar 

  17. Nakayama M, Komine K, Inohara D (2016) Nitrogen-doped carbon cloth for supercapacitors prepared via a hydrothermal process. J Electrochem Soc 163(10):A2428–A2434

    Article  CAS  Google Scholar 

  18. Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17):2676–2682

    Article  CAS  PubMed  Google Scholar 

  19. Ye D, Yu Y, Tang J, Liu L, Wu Y (2016) Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Nanoscale 8(19):10406–10414

    Article  CAS  PubMed  Google Scholar 

  20. Zhu YY, Cheng S, Zhou WJ, Jia J, Yang LF, Yao MH, Wang MK, Wu P, Luo HW, Liu ML (2017) Porous functionalized self-standing carbon fiber paper electrodes for high-performance capacitive energy storage. ACS Appl Mater Interfaces 9(19):13173–13180

    Article  CAS  PubMed  Google Scholar 

  21. Zhang HF, Xiao DJ, Li Q, Ma YY, Yuan SX, Xie LJ, Chen CM, Lu CX (2018) Porous NiCo2O4 nanowires supported on carbon cloth for flexible asymmetric supercapacitor with high energy density. J Energy Chem 27(1):195–202

    Article  Google Scholar 

  22. Xu XT, Tian XD, Li X, Yang T, He YT, Wang K, Song Y, Liu ZJ (2019) Structural and chemical synergistic effect of NiCo2S4 nanoparticles and carbon cloth for high performance binder-free asymmetric supercapacitors. Appl Surf Sci 465:635–642

    Article  CAS  Google Scholar 

  23. Hong XD, Li SL, Wang R, Fu JW (2019) Hierarchical SnO2 nanoclusters wrapped functionalized carbonized cotton cloth for symmetrical supercapacitor. J Alloys Compd 775:15–21

    Article  CAS  Google Scholar 

  24. Li S, Liu G, Liu J, Lu YK, Yang Q, Yang LY, Yang HR, Liu SL, Lei M, Han M (2016) Carbon fiber cloth@VO2(B): excellent binder-free flexible electrodes with ultrahigh mass-loading. J Mater Chem A 4(17):6426–6432

    Article  CAS  Google Scholar 

  25. Cakici M, Kakarla RR, Alonso-Marroquin F, Qiu WD (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309:151–158

    Article  CAS  Google Scholar 

  26. Horng YY, Lu YC, Hsu YK, Chen CC, Chen LC, Chen KH (2010) Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J Power Sources 195(13):4418–4422

    Article  CAS  Google Scholar 

  27. Gómez-Serrano V, Acedo-Ramos M, José López-Peinado A, Valenzuela-Calahorro C (1994) Oxidation of activated carbon by hydrogen peroxide. Study of surface functional groups by FT-i.r. Fuel 73(3):387–395

    Article  Google Scholar 

  28. Ferro-García MA, Moreno-Castilla C, Bautista-Toledo JPJ, Carrasco-Marín F, Rivera-Utrilla J (1995) Activated carbon surface modifications by nitric acid hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11:4386–4392

    Article  Google Scholar 

  29. Polovina M, Babić B, Kaluderović B, Dekanski A (1997) Surface characterization of oxidized activated carbon cloth. Carbon 35(8):1047–1052

    Article  CAS  Google Scholar 

  30. Peng Y, Liu HW (2006) Effects of oxidation by hydrogen peroxide on the structures of multiwalled carbon nanotubes. Ind Eng Chem Res 45:6483–6488

    Article  CAS  Google Scholar 

  31. Kundu S, Wang YM, Xia W, Muhler M (2008) Thermal stability and reducibility of oxygen-containing functional groups on multiwalled carbon nanotube surfaces: a quantitative high-resolution XPS and TPD/TPR study. J Phys Chem C 112:16869–16878

    Article  CAS  Google Scholar 

  32. Zhang HZ, Qiu WD, Zhang YF, Han Y, Yu MH, Wang ZF, Lu XH, Tong YX (2016) Surface engineering of carbon fiber paper for efficient capacitive energy storage. J Mater Chem A 4(47):18639–18645

    Article  CAS  Google Scholar 

  33. Li JE, Wang YW, Xu WN, Wang Y, Zhang B, Luo S, Zhou XY, Zhang CL, Gu X, Hu CG (2019) Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57:379–387

    Article  CAS  Google Scholar 

  34. Xie SL, Zhang M, Liu P, Wang SS, Liu S, Feng HB, Zheng HB, Cheng FL (2017) Advanced negative electrode of Fe2O3/graphene oxide paper for high energy supercapacitors. Mater Res Bull 96:413–418

    Article  CAS  Google Scholar 

  35. Lu ZY, Chen GX, Siahrostami S, Chen ZH, Liu K, Xie J, Liao L, Wu T (2018) High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat Catal 1:156–162

    Article  CAS  Google Scholar 

  36. Gu BN, Su H, Chu X, Wang Q, Huang HC, He JQ, Wu TJ, Deng WL, Zhang HT, Yan WQ (2019) Rationally assembled porous carbon superstructures for advanced supercapacitors. Chem Eng J 361:1296–1303

    Article  CAS  Google Scholar 

  37. Feng JX, Ye SH, Wang AL, Lu XF, Tong YX, Li GR (2014) Flexible cellulose paper-based asymmetrical thin film supercapacitors with high-performance for electrochemical energy storage. Adv Funct Mater 24:7093–7101

    Article  CAS  Google Scholar 

  38. Jiang SL, Shi TL, Zhan XB, Long HL, Xi S, Hu H, Tang Z (2014) High-performance all-solid-state flexible supercapacitors based on two-step activated carbon cloth. J Power Sources 272:16–23

    Article  CAS  Google Scholar 

  39. Xiao X, Li TQ, Peng ZH, Jin HY, Zhong QZ, Hu QY, Yao B, Luo QP, Zhang CF, Gong L, Chen J, Gogotsi Y, Zhou J (2014) Freestanding functionalized carbon nanotube-based electrode for solid-state asymmetric supercapacitors. Nano Energy 6:1–9

    Article  CAS  Google Scholar 

  40. Jiang SL, Shi TL, Zhan XB, Huang YY, Tang ZR (2016) Superior electrochemical performance of carbon cloth electrode-based supercapacitors through surface activation and nitrogen doping. Ionics 22:1881–1890

    Article  CAS  Google Scholar 

  41. Mao ZX, Zhao SB, Wang J, Zeng YX, Lu XH, Tong YX (2018) Facile synthesis of nitrogen-doped porous carbon as robust electrode for supercapacitors. Mater Res Bull 101:140–145

    Article  CAS  Google Scholar 

  42. Xu YX, Lin ZY, Huang XQ, Liu Y, Huang Y, Duan XF (2013) Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 7(5):4042–4019

    Article  CAS  PubMed  Google Scholar 

  43. Wang ZL, Zhu ZL, Qiu JH, Yang SH (2014) High performance flexible solid-state asymmetric supercapacitors from MnO2/ZnO core–shell nanorods//specially reduced graphene oxide. J Mater Chem C 2(7):1331–1336

    Article  Google Scholar 

  44. Zeng YX, Han Y, Zhao YT, Zeng Y, Yu MH, Liu YJ, Tang HL, Tong YX, Lu XH (2015) Advanced Ti-doped Fe2O3@PEDOT core/shell anode for high-energy asymmetric supercapacitors. Adv Energy Mater 5(12):1402176

    Article  CAS  Google Scholar 

  45. Lu XH, Zeng YX, Yu MH, Zhai T, Liang CL, Xie SL, Balogun MS, Tong YX (2014) Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv Mater 26(19):3148–3155

    Article  CAS  PubMed  Google Scholar 

  46. Lu XH, Yu MH, Zhai T, Wang GM, Xie SL, Liu TL, Liang CL, Tong YX, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13(6):2628–2633

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 61771327) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanxia Huang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, X., Huang, W., Shi, Q. et al. Hydrothermal activated carbon cloth as electrode materials for symmetric supercapacitors. Ionics 26, 1457–1464 (2020). https://doi.org/10.1007/s11581-019-03304-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03304-x

Keywords

Navigation