Skip to main content
Log in

Enhanced thermal decomposition performance of sodium perchlorate by molecular assembly strategy

  • Brief Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NaClO4-based molecular perovskite (H2dabco)[Na(ClO4)3] combined with the inorganic oxidizer and organic fuel was prepared by molecular assembly strategy. The high-yield samples were obtained by the one-pot reaction of NaClO4, HClO4, and triethylenediamine (dabco). The thermal analysis results showed molecular perovskite (H2dabco)[Na(ClO4)3] with ABX3-type closely ternary molecular stacking structure had a lower decomposition temperature (381.7 °C) and a higher heat release (2770 J/g) than NaClO4 (569.2 °C and 353 J/g). The apparent activation energy of thermal decomposition process was reduced by 25 kJ/mol from 184.8 kJ/mol of NaClO4 to 159.8 kJ/mol of (H2dabco)[Na(ClO4)3]. A synergistic catalysis thermal decomposition mechanism was proposed. The H2dabco2+ from the unique ternary molecular perovskite structure can be favorable for proton excitation under thermal stimuli, and promote the formation of HClO4 and superoxide radical anions ·O2 further, resulted in the redox thermal decomposition reaction between oxidizer ClO4 and fuel dabco more completely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. He W, Liu P, He G, Gozin M, Yan QL (2018) Highly reactive metastable intermixed composites (MICs): preparation and characterization. Adv Mater 30:e1706293. https://doi.org/10.1002/adma.201706293

    Article  CAS  PubMed  Google Scholar 

  2. Chen J, He S, Huang B, Wu P, Qiao Z, Wang J, Zhang L, Yang G, Huang H (2017) Enhanced thermal decomposition properties of CL-20 through space-confining in three-dimensional hierarchically ordered porous carbon. ACS Appl Mater Interfaces 9:10684–10691. https://doi.org/10.1021/acsami.7b00287

    Article  CAS  PubMed  Google Scholar 

  3. Deng P, Liu Y, Luo P et al (2017) Two-steps synthesis of sandwich-like graphene oxide/LLM-105 nanoenergetic composites using functionalized graphene. Mater. Lett. 194:156–159. https://doi.org/10.1016/j.matlet.2017.02.038

    Article  CAS  Google Scholar 

  4. Li Q, He Y, Peng R (2015) Graphitic carbon nitride (g-C3N4) as a metal-free catalyst for thermal decomposition of ammonium perchlorate. RSC Adv 5:24507–24512. https://doi.org/10.1039/C5RA01157D

    Article  CAS  Google Scholar 

  5. Cao X, Deng P, Hu S et al (2018) Fabrication and characterization of nanoenergetic hollow spherical hexanitrostibene (HNS) derivatives. Nanomaterials 8:336. https://doi.org/10.3390/nano8050336

    Article  CAS  PubMed Central  Google Scholar 

  6. Thiruvengadathan R, Chung S, Basuray S, Balasubramanian B, Staley CS, Gangopadhyay K, Gangopadhyay S (2014) A versatile self-assembly approach toward high performance nanoenergetic composite using functionalized graphene. Langmuir 30:6556–6564. https://doi.org/10.1021/la500573e

    Article  CAS  Google Scholar 

  7. Cao X, Shang Y, Meng K et al (2019) Fabrication of three-dimensional TKX-50 network-like nanostructures by liquid nitrogen-assisted spray freeze-drying method. J Energ Mater 37:356–364. https://doi.org/10.1080/07370652.2019.1585491

    Article  CAS  Google Scholar 

  8. Chakravarty A, Bhowmik K, Mukherjee A, de G (2015) Cu2O nanoparticles anchored on amine-functionalized graphite nanosheet: a potential reusable catalyst. Langmuir 31:5210–5219. https://doi.org/10.1021/acs.langmuir.5b00970

    Article  CAS  PubMed  Google Scholar 

  9. Intaphong P, Radklaochotsatain N, Somraksa W et al (2019) Combustion synthesis of nickel ferrite powders: effect of NaClO4 content on their characteristics and magnetic properties. Curr. Appl. Phys. 19:548–555. https://doi.org/10.1016/j.cap.2019.02.006

    Article  Google Scholar 

  10. Terashima Y, Takeda K, Honda M (2011) Phase behaviour and molecular dynamics in the binary system of sodium perchlorate and 1,2-propanediamine. J Chem Thermodyn 43:307–310. https://doi.org/10.1016/j.jct.2010.09.011

    Article  CAS  Google Scholar 

  11. Busurin S, Busurina M, Kuznetsov M et al (2010) Thermolysis in the BaO2–NaClO4 System. Dokl Phys Chem 431:772–777. https://doi.org/10.1134/S0012501610040068

    Article  CAS  Google Scholar 

  12. Elbasuney S, Fahd A (2019) Combustion wave of metalized extruded double-base propellants. Fuel 237:1274–1280. https://doi.org/10.1016/j.fuel.2018.10.018

    Article  CAS  Google Scholar 

  13. Chen W, Chang L, Ren S et al (2019) Direct Z-scheme 1D/2D WO2.72/ZnIn2S4 hybrid photocatalysts with highly-efficient visible-light-driven photodegradation towards tetracycline hydrochloride removal. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2019.121308

    Article  CAS  Google Scholar 

  14. Deng P, Xu J, Li S et al (2018) A facile one-pot synthesis of monodisperse hollow hexanitrostilbene-piperazine compound microspheres. Mater Lett 214:45–49. https://doi.org/10.1016/j.matlet.2017.11.104

    Article  CAS  Google Scholar 

  15. Boldyrev V (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443:1–36. https://doi.org/10.1016/j.tca.2005.11.038

    Article  CAS  Google Scholar 

  16. Wang M, Wang Q, Li J et al (2019) Assembly of large-area reduced graphene oxide films for the construction of Z-scheme over single-crystal porous Bi5O7I nanosheets. J Colloid Interf Sci 552:651–658

    Article  CAS  Google Scholar 

  17. Chen W, He Z, Huang G et al (2019) Direct Z-scheme 2D/2D MnIn2S4/g-C3N4 architectures with highly efficient photocatalytic activities towards treatment of pharmaceutical wastewater and hydrogen evolution. Chem Eng J 359:244–253. https://doi.org/10.1016/j.cej.2018.11.141

    Article  CAS  Google Scholar 

  18. Li X, Xiong J, Huang J et al (2019) Novel g-C3N4/h′ZnTiO3-a′TiO2 direct Z-scheme heterojunction with significantly enhanced visible-light photocatalytic activity. J Alloy Compd. 774:768–778. https://doi.org/10.1016/j.jallcom.2018.10.034

    Article  CAS  Google Scholar 

  19. Wang S, He F, Zhao X et al (2019) Phosphorous doped carbon nitride nanobelts for photodegradation of emerging contaminants and hydrogen evolution. Appl Catal B: Environ 257:117931. https://doi.org/10.1016/j.apcatb.2019.117931

    Article  CAS  Google Scholar 

  20. Wang Y, Wu Z, Weng H et al (2019) Separation of Re(VII) from aqueous solution by acetone-enhanced photoreduction: an insight into the role of acetone. J Photoch Photobio A. 380:111823. https://doi.org/10.1016/j.jphotochem.2019.04.034

    Article  CAS  Google Scholar 

  21. Yu H, Dong F, Li B et al (2019) Co(II) triggered radical reaction between SO2 and o-phenylenediamine for highly selective visual colorimetric detection of SO2 gas and its derivatives. Sensor Actuat B: Chem 299:126983. https://doi.org/10.1016/j.snb.2019.126983

    Article  CAS  Google Scholar 

  22. Li R, Wang J, He Y et al (2019) Mechanochemical synthesis of defective molybdenum trioxide, titanium dioxide, and zinc oxide at room temperature. ACS Sustainable Chem Eng 714:11985–11989. https://doi.org/10.1021/acssuschemeng.9b00374

    Article  CAS  Google Scholar 

  23. Lei J, Guo Q, Yin D et al (2019) Bioconcentration and bioassembly of N/S co-doped carbon with excellent stability for supercapacitors. Appl Surf Sci. 488:316–325. https://doi.org/10.1016/j.apsusc.2019.05.136

    Article  CAS  Google Scholar 

  24. He Y, Xu B, Li W, Yu H (2015) Silver nanoparticle-based chemiluminescent sensor array for pesticide discrimination. J Agric Food Chem 63:2930–2934. https://doi.org/10.1021/acs.jafc.5b00671

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Huang X, Yu H et al (2019) A colorimetric assay for ultrasensitive detection of copper (II) ions based on pH-dependent formation of heavily doped molybdenum oxide nanosheets. Mat Sci Eng C: Mater 101:614–618. https://doi.org/10.1016/j.msec.2019.04.022

    Article  CAS  Google Scholar 

  26. Chen S, Yang Z, Wang B et al (2018) Molecular perovskite high-energetic materials. Sci China Mater 61:1123–1128. https://doi.org/10.1007/s40843-017-9219-9

    Article  CAS  Google Scholar 

  27. Deng P, Ren H, Jiao Q (2019) Enhanced the combustion performances of ammonium perchlorate-based energetic molecular perovskite using functionalized graphene. Vacuum 169:108882. https://doi.org/10.1016/j.vacuum.2019.108882

    Article  CAS  Google Scholar 

  28. Chen S, Shang Y, He C et al (2018) Optimizing the oxygen balance by changing the A-site cations in molecular perovskite high-energetic materials. CrystEngComm 20:7458–7463. https://doi.org/10.1039/c8ce01350k

    Article  CAS  Google Scholar 

  29. Zhou J, Ding L, Zhao F et al (2019) Thermal studies of novel molecular perovskite energetic material (C6H14N2)[NH4(ClO4)3]. Chin Chem Lett Accepted. https://doi.org/10.1016/j.cclet.2019.05.008

    Article  Google Scholar 

  30. Hu L, Liu L, Hu S et al (2019) 1T/2H multi-phase MoS2 heterostructures: synthesis, characterization and thermal catalysis decomposition of dihydroxylammonium5,5-bistetrazole-1,1-diolate. New J Chem 43:10434–10441. https://doi.org/10.1039/c9nj02749a

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Weixiong Zhang and Dr. Shaoli Chen (Sun Yat-sen University, Guangzhou, China) for support and help.

Funding

This work was supported by the Natural Science Foundation of China (21975024 and 11372290).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, P., Ren, H. & Jiao, Q. Enhanced thermal decomposition performance of sodium perchlorate by molecular assembly strategy. Ionics 26, 1039–1044 (2020). https://doi.org/10.1007/s11581-019-03301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03301-0

Keywords

Navigation