Skip to main content
Log in

Simultaneous electrochemical determination of adenine and guanine using poly 2-naphthol orange film–modified electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A poly 2-naphthol orange (P2NO) has been employed for the simultaneous electrochemical detection of adenine (A) and guanine (G). The P2NO-modified electrode was fabricated by electrochemical polymerization using cyclic voltammetry by applying potentials between − 0.6 and 0.8 V at a scan rate of 50 mV/s in 0.1 M phosphate buffer (pH − 7.0) containing 1 mM naphthol orange. The formation of P2NO film on the electrode surface was confirmed by cyclic voltammetry and square wave voltammetry techniques. The modified P2NO electrode showed good electrochemical behavior towards detection of adenine and guanine. The obtained linear range was from 1.6 to 30 μM with a detection limit of 0.05 μM based on S/N = 3. The P2NO-modified electrode response towards detection of adenine and guanine was quite consistent, and it has been utilized for real sample analysis with fish DNA sperm samples and the obtained results are satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469(1):63–71

    Article  CAS  Google Scholar 

  2. Egli M, Flavell A, Allen S, Fisher J, Haq SI, Engels JW, Grasby JA, Pyle AM, Luisi B, Laughton C (2006) Nucleic acids in chemistry and biology. Royal Society of Chemistry,

  3. Chargaff E (2012) The nucleic acids. Elsevier,

  4. Duan R, Li C, Liu S, Liu Z, Li Y, Yuan Y, Hu X (2016) Determination of adenine based on the fluorescence recovery of the L-tryptophan–Cu2+ complex. Spectrochim Acta A Mol Biomol Spectrosc 152:272–277

    Article  CAS  Google Scholar 

  5. Tseng HC, Dadoo R, Zare RN (1994) Selective determination of adenine-containing compounds by capillary electrophoresis with laser-induced fluorescence detection. Anal Biochem 222(1):55–58

    Article  CAS  Google Scholar 

  6. Domínguez-Álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Zamarreño M-MD, Carabias-Martínez R (2017) Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. TrAC Trends Anal Chem 92:12–31

    Article  Google Scholar 

  7. L-s K, Chandrasegaran S, Pulford SM, Miller PS (1983) Detection of a guanine X adenine base pair in a decadeoxyribonucleotide by proton magnetic resonance spectroscopy. Proc Natl Acad Sci 80(14):4263–4265

    Article  Google Scholar 

  8. Graven P, Tambalo M, Scapozza L, Perozzo R (2014) Purine metabolite and energy charge analysis of Trypanosoma brucei cells in different growth phases using an optimized ion-pair RP-HPLC/UV for the quantification of adenine and guanine pools. Exp Parasitol 141:28–38

    Article  CAS  Google Scholar 

  9. Zou L, Li Y, Ye B (2011) Voltammetric sensing of guanine and adenine using a glassy carbon electrode modified with a tetraoxocalix [2] arene [2] triazine Langmuir-Blodgett film. Microchim Acta 173(3-4):285–291

    Article  CAS  Google Scholar 

  10. Wang G, Shi G, Chen X, Yao R, Chen F (2015) A glassy carbon electrode modified with graphene quantum dots and silver nanoparticles for simultaneous determination of guanine and adenine. Microchim Acta 182(1-2):315–322

    Article  CAS  Google Scholar 

  11. Huang K-J, Wang L, Wang H-B, Gan T, Wu Y-Y, Li J, Liu Y-M (2013) Electrochemical biosensor based on silver nanoparticles–polydopamine–graphene nanocomposite for sensitive determination of adenine and guanine. Talanta 114:43–48

    Article  CAS  Google Scholar 

  12. Yousefi A, Babaei A (2019) A new sensor based on glassy carbon electrode modified with Fe3O4@MCM-48-SO3H/multi-wall carbon nanotubes composite for simultaneous determination of norepinephrine and tyrosine in the presence of ascorbic acid. Ionics 25(6):2845–2856. https://doi.org/10.1007/s11581-018-2815-9

    Article  CAS  Google Scholar 

  13. Zhang L, Zhang H, Chu X, Han X (2019) One-dimensional mesoporous Co3O4 tubules for enhanced performance supercapacitor and enzymeless glucose sensing. Ionics.:1–14. https://doi.org/10.1007/s11581-019-03087-1

  14. Saranya S, Jency JF, Geetha B, Deepa PN (2019) Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO–modified electrode. Ionics.:1–14. https://doi.org/10.1007/s11581-019-03064-8

  15. Huang K-J, Niu D-J, Sun J-Y, Han C-H, Wu Z-W, Li Y-L, Xiong X-Q (2011) Novel electrochemical sensor based on functionalized graphene for simultaneous determination of adenine and guanine in DNA. Colloids Surf B: Biointerfaces 82(2):543–549

    Article  CAS  Google Scholar 

  16. Chen Y, Mei T, Chen Y, Wang J, Li J, Wang X (2017) 8-Aminoquinoline functionalized graphene oxide for simultaneous determination of guanine and adenine. J Solid State Electrochem 21(5):1357–1364

    Article  CAS  Google Scholar 

  17. Fan Y, Huang K-J, Niu D-J, Yang C-P, Jing Q-S (2011) TiO2-graphene nanocomposite for electrochemical sensing of adenine and guanine. Electrochim Acta 56(12):4685–4690

    Article  CAS  Google Scholar 

  18. Xi M, Duan Y, Li X, Qu L, Sun W, Jiao K (2010) Carbon electrode modified with ionic liquid and multi-walled carbon nanotubes for voltammetric sensing of adenine. Microchim Acta 170(1):53–58. https://doi.org/10.1007/s00604-010-0371-8

    Article  CAS  Google Scholar 

  19. Liu H, Wang G, Chen D, Zhang W, Li C, Fang B (2008) Fabrication of polythionine/NPAu/MWNTs modified electrode for simultaneous determination of adenine and guanine in DNA. Sensors Actuators B Chem 128(2):414–421

    Article  CAS  Google Scholar 

  20. Gerard M, Chaubey A, Malhotra B (2002) Application of conducting polymers to biosensors. Biosens Bioelectron 17(5):345–359

    Article  CAS  Google Scholar 

  21. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review. TrAC Trends Anal Chem 76:15–29

    Article  CAS  Google Scholar 

  22. Kuskur CM, Swamy BK, Jayadevappa H, Ganesh P (2018) Poly (rhodamine B) sensor for norepinephrine and paracetamol: a voltammetric study. Ionics 24(11):3631–3640

    Article  CAS  Google Scholar 

  23. Manikandan R, Deepa PN, Narayanan SS (2019) Anodic stripping voltammetric determination of Hg(II) using poly xylenol orange film modified electrode. Ionics 25(3):1387–1394. https://doi.org/10.1007/s11581-018-2704-2

    Article  CAS  Google Scholar 

  24. Xu L, Ma J, Zhou N, Guo P, Wang G, Su C (2018) Well-dispersed poly (m-phenylenediamine)/silver composite for non-enzymatic amperometric glucose sensor applied in a special alkaline environment. Ionics 24(9):2795–2805

    Article  CAS  Google Scholar 

  25. Norouzi B, Gorji A (2019) Preparation of cobalt-poly (naphthylamine)/sodium dodecylsulfate-modified carbon paste electrode as a sensitive sensor for l-cysteine. Ionics 25(2):797–807

    Article  CAS  Google Scholar 

  26. Tang C, Yogeswaran U, Chen S-M (2009) Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly (new fuchsin) composite film. Anal Chim Acta 636(1):19–27

    Article  CAS  Google Scholar 

  27. Manikandan R, Sriman Narayanan S (2017) Differential pulse anodic stripping voltammetric determination of lead(II) using poly xylenol orange modified electrode. Electroanalysis 29(2):609–615. https://doi.org/10.1002/elan.201600368

    Article  CAS  Google Scholar 

  28. Habibi B, Jahanbakhshi M (2016) A glassy carbon electrode modified with carboxylated diamond nanoparticles for differential pulse voltammetric simultaneous determination of guanine and adenine. Microchim Acta 183(7):2317–2325

    Article  CAS  Google Scholar 

  29. Tu X, Luo X, Luo S, Yan L, Zhang F, Xie Q (2010) Novel carboxylation treatment and characterization of multiwalled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA. Microchim Acta 169(1-2):33–40

    Article  CAS  Google Scholar 

  30. Wang Z, Xiao S, Chen Y (2006) β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J Electroanal Chem 589(2):237–242

    Article  CAS  Google Scholar 

  31. Sun W, Li Y, Duan Y, Jiao K (2008) Direct electrocatalytic oxidation of adenine and guanine on carbon ionic liquid electrode and the simultaneous determination. Biosens Bioelectron 24(4):988–993

    Article  CAS  Google Scholar 

  32. Prathap MA, Srivastava R, Satpati B (2013) Simultaneous detection of guanine, adenine, thymine, and cytosine at polyaniline/MnO2 modified electrode. Electrochim Acta 114:285–295

    Article  Google Scholar 

  33. Niu X, Yang W, Ren J, Guo H, Long S, Chen J, Gao J (2012) Electrochemical behaviors and simultaneous determination of guanine and adenine based on graphene–ionic liquid–chitosan composite film modified glassy carbon electrode. Electrochim Acta 80:346–353

    Article  CAS  Google Scholar 

  34. Yari A, Derki S (2016) New MWCNT-Fe3O4@PDA-Ag nanocomposite as a novel sensing element of an electrochemical sensor for determination of guanine and adenine contents of DNA. Sensors Actuators B Chem 227:456–466

    Article  CAS  Google Scholar 

  35. Wang P, Wu H, Dai Z, Zou X (2011) Simultaneous detection of guanine, adenine, thymine and cytosine at choline monolayer supported multiwalled carbon nanotubes film. Biosens Bioelectron 26(7):3339–3345

    Article  CAS  Google Scholar 

  36. Ren S, Wang H, Zhang H, Yu L, Li M, Li M (2015) Direct electrocatalytic and simultaneous determination of purine and pyrimidine DNA bases using novel mesoporous carbon fibers as electrocatalyst. J Electroanal Chem 750:65–73

    Article  CAS  Google Scholar 

  37. Thangaraj R, Kumar AS (2013) Simultaneous detection of guanine and adenine in DNA and meat samples using graphitized mesoporous carbon modified electrode. J Solid State Electrochem 17(3):583–590

    Article  CAS  Google Scholar 

  38. Deng C, Xia Y, Xiao C, Nie Z, Yang M, Si S (2012) Electrochemical oxidation of purine and pyrimidine bases based on the boron-doped nanotubes modified electrode. Biosens Bioelectron 31(1):469–474

    Article  CAS  Google Scholar 

  39. Yoshida H, Mizukoshi T, Hirayama K, Miyano H (2007) Comprehensive analytical method for the determination of hydrophilic metabolites by high-performance liquid chromatography and mass spectrometry. J Agric Food Chem 55(3):551–560

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Department of Analytical Chemistry, University of Madras for providing research facilities.

Funding

Funding was provided by the University Grants Commission (UGC-Non-Net), New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangilimuthu Sriman Narayanan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manikandan, R., Deepa, P.N. & Narayanan, S.S. Simultaneous electrochemical determination of adenine and guanine using poly 2-naphthol orange film–modified electrode. Ionics 26, 1475–1482 (2020). https://doi.org/10.1007/s11581-019-03279-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03279-9

Keywords

Navigation