Skip to main content
Log in

The effects of K substitution on LiNi0.66Co0.20Mn0.14O2 for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The high-nickel ternary cathode material LiNixCoyMn1-x-yO2 has high theoretical capacity and can be filled the power density requirement of a foot-powered car. It is placed on high expectations. However, Li/Ni mixing occurred during charging and discharging, resulting in poor cycle performance of the material. In this paper, spherical Ni0.66Co0.20Mn0.14(OH)2 precursor as prepared by co-precipitation. Then, well-ordered spherical [Li(1-x)Kx](Ni0.66Co0.20Mn0.14)O2 was synthesized. The effect of k substitution on the crystal structure and electrochemical properties of Li(Ni0.66Co0.20Mn0.14)O2 systematically by using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), charge-discharge test, cyclic voltammetry (C–V) method, and electrochemical impedance spectroscopy (EIS) test. The initial discharge specific capacity of Li0.98K0.02Ni0.66Co0.20Mn0.14O2 is 202.0 mAh/g, 169.3 mAh/g, 138.8 mAh/g, and 117.8 mAh/g at 0.1 C, 0.2 C, 0.5 C, 1 C, respectively, which is higher than other materials. The [Li0.98K0.02](Ni0.66Co0.20Mn0.14)O2 shows the initial discharge capacity of 117.8 mAh/g with the capacity retention of 86.1% after 30 cycles at 1 C. It shows good cycle performance and rate performance. Results showed K substitution played an important role in the superior reversible capacity and good cycling performance of Li(Ni0.66Co0.20Mn0.14)O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Stoyanova R, Zhecheva E, Alcántara R et al (2003) Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li(LixNi1-x)O2 oxides as cathode materials for lithium-ion batteries[J]. Solid State Ionics 161(3):197–204

    Article  CAS  Google Scholar 

  2. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  Google Scholar 

  3. Liu J, Zhang J-G, Yang Z, Schwenzer JP et al (2013) Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv Funct Mater 23:929–946

    Article  CAS  Google Scholar 

  4. Schipper F, Erickson EM, Erk C et al (2016) Review recent advances and remaining challenges for lithium ion battery cathodes. J Electrochem Soc 164:A6220–A6228

    Article  Google Scholar 

  5. Armand J-MTM (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367

    Article  Google Scholar 

  6. Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen nonstoichiometry, electrochemical behavior and transport properties. Solid State Ionics 170(3):159–171

    Article  CAS  Google Scholar 

  7. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  8. Belov D, Yang MH (2008) Investigation of the kinetic mechanism in overcharge process for Li-ion battery. Solid State Ionics 179(27):1816–1821

    Article  CAS  Google Scholar 

  9. Belov D, Yang MH (2008) Failure mechanism of Li-ion battery at overcharge conditions. J Solid State Electrochem 12(7–8):885–894

    Article  CAS  Google Scholar 

  10. Doh CH, Kim DH, Kim HS et al (2008) Thermal and electrochemical behaviour of C/ LixCoO2 cell during safety test. J Power Sources 175(2):881–885

    Article  CAS  Google Scholar 

  11. Xu H, Ye X, Xiao C et al (2015) Synthesis and electrochemical performance of Mg-doped Li(Ni1/3Co1/3Mn1/3)1–xMgxO2 cathode material for lithium-ion battery[J]. Synth React Inorg M 45(2)

  12. Dahn UVSJ, Michal C (1990) Rechargeable LiNiO2 carbon cells. Solid State Ionics 44:87

    Article  CAS  Google Scholar 

  13. J. Zheng, T. Liu, Z. Hu, . et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2, J Am Chem Soc 138 (2016) 13326-13334.

    Article  CAS  Google Scholar 

  14. Makimura TOAY (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642

    Article  Google Scholar 

  15. Manthiram A, Knight JC, Myung S-T, Oh S-M et al (2016) Nickel-rich and lithium-rich layered oxide cathodes: progress and perspectives. Adv Eng Mater 6:1501010

    Article  Google Scholar 

  16. Liu W, Oh P, Liu X et al (2015) Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew Chem 54:4440–4457

    Article  CAS  Google Scholar 

  17. Chen H, Dawson JA, Harding JH (2014) Effects of cationic substitution on structural defects in layered cathode materials LiNiO2. J Mater Chem A 2:7988

    Article  CAS  Google Scholar 

  18. Koyama Y, Arai H, Tanaka I et al (2012) Defect chemistry in layered LiMO2(M¼ Co, Ni, Mn, and Li1/3Mn2/3) by first-principles calculations. Chem Mater 24:3886–3894

    Article  CAS  Google Scholar 

  19. Makimura Y, Sasaki T, Nonaka T, Nishimura YF et al (2016) Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium ion batteries. J Mater Chem A 4:8350–8358

    Article  CAS  Google Scholar 

  20. Yu Z, Shang SL, Gordin ML et al (2015) Ti-substituted Li[Li0.26Mn0.6−xTixNi0.07Co0.07]O2 layered cathode material with improved structural stability and suppressed voltage fading[J]. J Mater Chem A:3

  21. Thackeray M, Kang SH, Johnson CS et al (2007) Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries[J]. J Mater Chem 17(30):3112–3125

    Article  CAS  Google Scholar 

  22. Mi C, Han E, Li L, Zhu L et al (2018) Effect of iron doping on LiNi0.35Co0.30Mn0.35O2[J]. J Solid State Ionics 325:24–29

    Article  CAS  Google Scholar 

  23. Li JG, Wang L, Zhang Q, He XM (2009) Synthesis and characterization of LiNi0.6Mn0.4xCoxO2 as cathode materials for Li-ion batteries. J Power Sources 189:28–33

    Article  CAS  Google Scholar 

  24. Liao PY, Duh JG, Sheen SR (2005) Microstructure and electrochemical performance of LiNi0.6Co0.4xMnxO2 cathode materials. J Power Sources 143:212–218

    Article  CAS  Google Scholar 

  25. Chen Y, Wang GX, Liu KHK et al (2003) Synthesis and characterization of LiCoxMnyNi1-x-yO2 as a cathode material for secondary lithium batteries. J Power Sources 119–121:184–188

    Article  Google Scholar 

  26. Yue P, Wang ZX, Li XH et al (2013) The enhanced electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials by low temperature fluorine substitution. Electrochim Acta 95:112–118

    Article  CAS  Google Scholar 

  27. Yue P, Wang ZX, Peng WJ, Li J et al (2011) Spray-drying synthesized LiNi0.6Co0.2Mn0.2O2 and its electrochemical performance as cathode materials for lithium ion batteries. Powder Technol 214:279–282

    Article  CAS  Google Scholar 

  28. Shi SJ, Tu JP, Tang YY et al (2013) Enhanced electrochemical performance of LiF-modifified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Power Sources 225:338–341

    Article  CAS  Google Scholar 

  29. Liang LW, Du K, Lu W et al (2014) Synthesis and characterization of LiNi0.6CoxMn0.4-xO2 (x = 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3) with high-electrochemical performance for lithium-ion batteries[J]. Electrochim Acta 146:207–217

    Article  CAS  Google Scholar 

  30. Du K, Huang JL, Cao YB et al (2013) Study of effects on LiNi0.8Co0.15Al0.05O2 cathode by LiNi1/3Co1/3Mn1/3O2 coating for lithium ion batteries[J]. J Alloys Compd 574:377–382

    Article  CAS  Google Scholar 

  31. Liu S, Wu H, Huang L, Xiang M et al (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloys Compd 674:447–454

    Article  CAS  Google Scholar 

  32. Zhang G, Han E, Zhu L et al (2017) Synthesis and electrochemical properties of Li(Ni0.56Co0.19Mn0.24Al0.01)1-yAlyO2 as cathode material for lithium-ion batteries[J]. Ionics 23(9):2259–2267

    Article  CAS  Google Scholar 

  33. Wang D, Li X, Wang Z et al (2015) Improved high voltage electrochemical performance of Li2ZrO3-coated LiNi0.5Co0.2Mn0.3O2 cathode material [J]. J Alloys Compd 647:612–619

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enshan Han.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, M., Han, E., Tian, Y. et al. The effects of K substitution on LiNi0.66Co0.20Mn0.14O2 for lithium-ion batteries. Ionics 26, 1189–1196 (2020). https://doi.org/10.1007/s11581-019-03274-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03274-0

Keywords

Navigation