Skip to main content
Log in

Ionic liquid–assisted hydrothermal synthesis of Ta2O5 nanoparticles for lithium-ion battery applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Ta2O5 nanoparticles (NPs) are one of the exemplary anode materials for a lithium-ion battery which undergoes the conversion-type electrochemical reaction with extrinsic pseudocapacitance. Ta2O5 NPs have been synthesized using the ionic liquid–assisted hydrothermal method. The prepared mesoporous Ta2O5 NPs were characterized using XRD, Raman, TEM, and BET surface area analysis. XRD pattern of prepared Ta2O5 NPs exhibited an orthorhombic crystal structure with an average crystallite size of 30 nm. The BET specific surface area and average pore diameter of Ta2O5 NPs were found to be 23.11 m2/g and 21 nm respectively. TEM images showed the particle-like structure with an average particle size of 25 nm. Ta2O5 NPs show excellent performance with a reversible capacity of 190 mAh g−1 even after 150 cycles at C/10 current rate. Therefore, Ta2O5 NPs could be the prospective contestant as a anode material for the lithium-ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yoshino A (2012) The birth of the lithium-ion battery. Angew Chem Int Ed 51:5798–5800

    Article  CAS  Google Scholar 

  2. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  CAS  PubMed  Google Scholar 

  3. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935

    Article  CAS  PubMed  Google Scholar 

  4. Liu K, Liu Y, Lin D, Pei A, Cui Y (2018) Materials for lithium-ion battery safety. Sci Adv 4:eaas9820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng X, Li M, Abd El-Hady D, Alshitari W, Al-Bogami AS, Lu J, Amine K (2019) Commercialization of lithium battery technologies for electric vehicles. Adv Energy Mater 9:1900161

    Article  Google Scholar 

  6. Lu J, Chen Z, Ma Z, Pan F, Curtiss LA, Amine K (2016) The role of nanotechnology in the development of battery materials for electric vehicles. Nat Nanotechnol 11:1031

    Article  CAS  PubMed  Google Scholar 

  7. Liu Y, Zhu Y, Cui Y (2019) Challenges and opportunities towards fast-charging battery materials. Nat Energy 4:540–550

    Article  Google Scholar 

  8. Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:16023

    Article  CAS  Google Scholar 

  9. Mahmood N, Tang T, Hou Y (2016) Nanostructured anode materials for lithium ion batteries: progress, challenge and perspective. Adv Energy Mater 6:1600374

    Article  CAS  Google Scholar 

  10. Lu Y, Yu L, Lou XWD (2018) Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem 4:972–996

    Article  CAS  Google Scholar 

  11. Reddy M, Subba Rao G, Chowdari B (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457

    Article  CAS  PubMed  Google Scholar 

  12. Liu Z, Yu Q, Zhao Y, He R, Xu M, Feng S, Li S, Zhou L, Mai L (2019) Silicon oxides: a promising family of anode materials for lithium-ion batteries. Chem Soc Rev 48:285–309

    Article  CAS  PubMed  Google Scholar 

  13. Subhan A, Oemry F, Khusna SN, Hastuti E (2019) Effects of activated carbon treatment on Li4Ti5O12 anode material synthesis for lithium-ion batteries. Ionics 25:1025–1034

    Article  CAS  Google Scholar 

  14. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  CAS  Google Scholar 

  15. Augustyn V, Come J, Lowe MA, Kim JW, Taberna P-L, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat Mater 12:518

    Article  CAS  PubMed  Google Scholar 

  16. Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211

    Article  CAS  PubMed  Google Scholar 

  17. Brezesinski K, Wang J, Haetge J, Reitz C, Steinmueller SO, Tolbert SH, Smarsly BM, Dunn B, Brezesinski T (2010) Pseudocapacitive Contributions to charge storage in highly ordered mesoporous group V Transition metal oxides with iso-oriented layered nanocrystalline domains. J Am Chem Soc 132:6982–6990

    Article  CAS  PubMed  Google Scholar 

  18. Sun H, Mei L, Liang J, Zhao Z, Lee C, Fei H, Ding M, Lau J, Li M, Wang C, Xu X (2017) Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 356:599–604

    Article  CAS  PubMed  Google Scholar 

  19. Huang H, Wang X, Tervoort E, Zeng G, Liu T, Chen X, Sologubenko A, Niederberger M (2018) Nano-sized structurally disordered metal oxide composite aerogels as high-power anodes in hybrid supercapacitors. ACS Nano 12:2753–2763

    Article  CAS  PubMed  Google Scholar 

  20. Son Y, Ma J, Kim N, Lee T, Lee Y, Sung J, Choi SH, Nam G, Cho H, Yoo Y, Cho J (2019) Quantification of pseudocapacitive contribution in nanocage-shaped silicon–carbon composite anode. Adv Energy Mater 9:1803480

    Article  CAS  Google Scholar 

  21. Lou S, Cheng X, Wang L, Gao J, Li Q, Ma Y, Gao Y, Zuo P, Du C, Yin G (2017) High-rate capability of three-dimensionally ordered macroporous T-Nb2O5 through Li+ intercalation pseudocapacitance. J Power Sources 361:80–86

    Article  CAS  Google Scholar 

  22. Fu ZW, Huang F, Chu YQ, Zhang Y, Qin QZ (2003) Characterization of amorphous Ta2O5 film as a novel anode material. J Electrochem Soc 150:A776–AA82

    Article  CAS  Google Scholar 

  23. Zhang P, Zhang J, Gong J (2014) Tantalum-based semiconductors for solar water splitting. Chem Soc Rev 43:4395–4422

    Article  CAS  PubMed  Google Scholar 

  24. Wang B, Huang W, Chi L, Al-Hashimi M, Marks TJ, Facchetti A (2018) High-k gate dielectrics for emerging flexible and stretchable electronics. Chem Rev 118:5690–5754

    Article  CAS  PubMed  Google Scholar 

  25. Cherevan AS, Robbins S, Dieterle D, Gebhardt P, Wiesner U, Eder D (2016) Ordered gyroidal tantalum oxide photocatalysts: eliminating diffusion limitations and tuning surface barriers. Nanoscale 8:16694–16701

    Article  CAS  PubMed  Google Scholar 

  26. Naveenraj S, Lee GJ, Anandan S, Wu JJ (2015) Nanosized tantala based materials – synthesis and applications. Mater Res Bull 67:20–46

    Article  CAS  Google Scholar 

  27. Yu X, Li W, Li Z, Liu J, Hu P (2017) Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl Catal B Environ 217:48–56

    Article  CAS  Google Scholar 

  28. Xia S, Ni J, Savilov SV, Li L (2018) Oxygen-deficient Ta2O5 nanoporous films as self-supported electrodes for lithium microbatteries. Nano Energy 45:407–412

    Article  CAS  Google Scholar 

  29. Tu H, Xu L, Mou F, Guan J (2016) Highly active Ta2O5 microcubic single crystals: facet energy calculation, facile fabrication and enhanced photocatalytic activity of hydrogen production. J Mater Chem A 4:16562–16568

    Article  CAS  Google Scholar 

  30. Nagaraju G, Karthik K, Shashank M (2019) Ultrasound-assisted Ta2O5 nanoparticles and their photocatalytic and biological applications. Microchem J 147:749–754

    Article  CAS  Google Scholar 

  31. Dupont J (2011) From molten salts to ionic liquids: a “nano” journey. Acc Chem Res 44:1223–1231

    Article  CAS  PubMed  Google Scholar 

  32. Gao M-R, Yuan J, Antonietti M (2017) Ionic Liquids and poly(ionic liquid)s for morphosynthesis of inorganic materials. Chem Eur J 23:5391–5403

    Article  CAS  PubMed  Google Scholar 

  33. Nagaraju G, Udayabhanu SJP, Manjunath K, Dupont J (2018) Ionothermal synthesis of TiO2 nanoparticles for enhanced photocatalytic H2 generation. Int J Hydrog Energy 43:4028–4035

    Article  CAS  Google Scholar 

  34. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426

    Article  CAS  PubMed  Google Scholar 

  35. Souza VS, Scholten JD, Weibel DE, Eberhardt D, Baptista DL, Teixeira SR, Dupont J (2016) Hybrid tantalum oxide nanoparticles from the hydrolysis of imidazolium tantalate ionic liquids: efficient catalysts for hydrogen generation from ethanol/water solutions. J Mater Chem A 4:7469–7475

    Article  CAS  Google Scholar 

  36. Jana MK, Rajendra HB, Bhattacharyya AJ, Biswas K (2014) Green ionothermal synthesis of hierarchical nanostructures of SnS2 and their Li-ion storage properties. CrystEngComm 16:3994–4000

    Article  CAS  Google Scholar 

  37. Li Z, Jia Z, Luan Y, Mu T (2008) Ionic liquids for synthesis of inorganic nanomaterials. Curr Opinion Solid State Mater Sci 12:1–8

    Article  CAS  Google Scholar 

  38. He Z, Alexandridis P (2015) Nanoparticles in ionic liquids: interactions and organization. Phys Chem Chem Phys 17:18238–18261

    Article  CAS  PubMed  Google Scholar 

  39. Pan L, Huang H, Liu T, Niederberger M (2019) Structurally disordered Ta2O5 aerogel for high-rate and highly stable Li-ion and Na-ion storage through surface redox pseudocapacitance. Electrochim Acta 321:134645

    Article  CAS  Google Scholar 

  40. Manukumar KN, Kishore B, Manjunath K, Nagaraju G (2018) Mesoporous Ta2O5 nanoparticles as an anode material for lithium ion battery and an efficient photocatalyst for hydrogen evolution. Int J Hydrog Energy 43:18125–18135

    Article  CAS  Google Scholar 

  41. Roth R, Waring J, Parker H (1970) Effect of oxide additions on the polymorphism of tantalum pentoxide. IV. The system Ta2O5-Ta2WO8. J Solid State Chem 2:445–461

    Article  CAS  Google Scholar 

  42. Condon JB. (2006) Surface area and porosity determinations by physisorption: measurements and theory. Elsevier

  43. Park GC, Seo TY, Park CH, Lim JH, Joo J (2017) Effects of calcination temperature on morphology, microstructure, and photocatalytic performance of tio2 mesocrystals. Ind Eng Chem Res 56:8235–8240

    Article  CAS  Google Scholar 

  44. Dobal PS, Katiyar RS, Jiang Y, Guo R, Bhalla AS (2000) Raman scattering study of a phase transition in tantalum pentoxide. J Raman Spectrosc 31:1061–1065

    Article  Google Scholar 

  45. Joseph C, Bourson P, Fontana MD (2012) Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy. J Raman Spectrosc 43:1146–1150

    Article  CAS  Google Scholar 

  46. Gogotsi Y, Penner RM (2018) Energy storage in nanomaterials – capacitive, pseudocapacitive, or battery-like? ACS Nano 12:2081–2083

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors immensely thank ISRO-RESPOND (Project No. ISRO/RES/3/661/2014-15 Dated 14-07-2014) Govt. of India for sanctioning the project and financial assistance. The authors also thank DST Nanomission, Govt. of India, New Delhi for financial support. (No.SR/NM/NS-1262/2013 (G) dated 18-03-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Nagaraju.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manukumar, K.N., Viswanatha, R. & Nagaraju, G. Ionic liquid–assisted hydrothermal synthesis of Ta2O5 nanoparticles for lithium-ion battery applications. Ionics 26, 1197–1202 (2020). https://doi.org/10.1007/s11581-019-03264-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03264-2

Keywords

Navigation