pp 1–11 | Cite as

Polyaniline-coated VS4@rGO nanocomposite as high-performance cathode material for magnesium batteries based on Mg2+/Li+ dual ion electrolytes

  • Pengcheng Jing
  • Huimin LuEmail author
  • Wenwen Yang
  • Yuan Cao
  • Binbin Xu
  • Wei Cai
  • Yan Deng
Original Paper


Magnesium batteries based on Mg2+/Li+ dual ion electrolytes (MLIBs) have attracted increasing attention due to fast Li+ or Mg2+/Li+ insertion kinetics, abundant Mg resources, and high volumetric capacity of dendrite-free Mg anodes. Herein, we report polyaniline (PANI)–coated VS4@reduced graphene oxide (rGO) with nanostructures synthesized via hydrothermal synthesis and subsequent PANI polymerization as the cathode material for MLIBs. The PANI layer serves as a conductive medium to enhance electron transfer and Mg2+/Li+ transportation as well as to mitigate the structure changes of VS4 during the cycling process. Indeed, this material demonstrates enhanced electrochemical performance with a high discharge capacity of 200.7 mAh g−1 after 20 cycles and 91.2% retention after 50 cycles. Mechanism analysis reveals that Li+ insertion into VS4 produced an amorphous VS4 host in the first discharge, which inclined to store Mg2+ rather than Li+ in the subsequent cycles. Our study provides new insights into the development of amorphous electrode materials for magnesium batteries.


Magnesium batteries Hydrothermal synthesis VS4 Polyaniline (PANI) Nanostructures 


Funding information

This work was supported by a grant from the Science and Technology Ministry of China (863 project 2012AA062302).

Supplementary material

11581_2019_3239_MOESM1_ESM.docx (17.5 mb)
ESM 1 (DOCX 17954 kb)


  1. 1.
    Lu D, Shao Y, Lozano T, Bennett WD, Graff GL, Polzin B, Zhang J, Engelhard MH, Saenz NT, Henderson WA, Bhattacharya P, Liu J, Xiao J (2015) Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv Energy Mater 5:1400993CrossRefGoogle Scholar
  2. 2.
    Zhang Q, Liu N-N, Sun C-Z, Fan L-S, Zhang N-Q, Sun K-N (2019) Ultrasmall Iron fluoride nanoparticles embedded in graphitized porous carbon derived from Fe-based metal organic frameworks as high-performance cathode materials for Li batteries. ChemElectroChem 6:2189–2194CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Sun C, Fan L, Zhang N, Sun K (2019) Iron fluoride vertical nanosheets array modified with graphene quantum dots as long-life cathode for lithium ion batteries. Chem Eng J 371:245–251CrossRefGoogle Scholar
  4. 4.
    Yagi S, Ichitsubo T, Shirai Y, Yanai S, Doi T, Murase K, Matsubara E (2014) A concept of dual-salt polyvalent-metal storage battery. J Mater Chem A 2:1144–1149CrossRefGoogle Scholar
  5. 5.
    Park M-S, Kim J-G, Kim Y-J, Choi N-S, Kim J-S (2015) Recent advances in rechargeable magnesium battery technology: a review of the field’s current status and prospects. Isr J Chem 55:570–585CrossRefGoogle Scholar
  6. 6.
    Ong SP, Chevrier VL, Hautier G, Jain A, Moore C, Kim S, Ma X, Ceder G (2011) Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials. Energy Environ Sci 4:3680–3688CrossRefGoogle Scholar
  7. 7.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E (2000) Prototype systems for rechargeable magnesium batteries. Nature 407:724–727CrossRefGoogle Scholar
  8. 8.
    Koketsu T, Ma J, Morgan BJ, Body M, Legein C, Dachraoui W, Giannini M, Demortiere A, Salanne M, Dardoize F, Groult H, Borkiewicz OJ, Chapman KW, Strasser P, Dambournet D (2017) Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat Mater 16:1142–1148CrossRefGoogle Scholar
  9. 9.
    Yang W, Lu H, Cao Y, Xu B, Deng Y, Cai W (2019) A flexible free-standing MoS2 /carbon nanofibers composite cathode for rechargeable aluminum-ion batteries, ACS Sustainable Chem. Eng.Google Scholar
  10. 10.
    Matsui M (2011) Study on electrochemically deposited Mg metal. J Power Sources 196:7048–7055CrossRefGoogle Scholar
  11. 11.
    Aurbach D, Suresh GS, Levi E, Mitelman A, Mizrahi O, Chusid O, Brunelli M (2007) Progress in rechargeable magnesium battery technology. Adv Mater 19:4260–4267CrossRefGoogle Scholar
  12. 12.
    Song M, Niu J, Yin K, Gao H, Zhang C, Ma W, Luo F, Peng Z, Zhang Z (2019) Self-supporting, eutectic-like, nanoporous biphase bismuth-tin film for high-performance magnesium storage. Nano Res 12:801–808CrossRefGoogle Scholar
  13. 13.
    Li Y, An Q, Cheng Y, Liang Y, Ren Y, Sun C-J, Dong H, Tang Z, Li G, Yao Y (2017) A high-voltage rechargeable magnesium-sodium hybrid battery. Nano Energy 34:188–194CrossRefGoogle Scholar
  14. 14.
    Guo Y-s, Zhang F, Yang J, Wang F-f, NuLi Y, Hirano S-i (2012) Boron-based electrolyte solutions with wide electrochemical windows for rechargeable magnesium batteries. Energy Environ Sci 5:9100–9106CrossRefGoogle Scholar
  15. 15.
    Shin W-K, Kannan AG, Kim D-W (2015) Effective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl Mater Interfaces 7:23700–23707CrossRefGoogle Scholar
  16. 16.
    Yoo HD, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach D (2013) Mg rechargeable batteries: an on-going challenge. Energy Environ Sci 6:2265–2279CrossRefGoogle Scholar
  17. 17.
    Niu J, Gao H, Ma W, Luo F, Yin K, Peng Z, Zhang Z (2018) Dual phase enhanced superior electrochemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Materials 14:351–360CrossRefGoogle Scholar
  18. 18.
    Parent LR, Cheng Y, Sushko PV, Shao Y, Liu J, Wang C-M, Browning ND (2015) Realizing the full potential of insertion anodes for mg-ion batteries through the Nanostructuring of Sn. Nano Lett 15:1177–1182CrossRefGoogle Scholar
  19. 19.
    Tang H, Xu N, Pei C, Xiong F, Tan S, Luo W, An Q, Mai L (2017) H2V3O8 nanowires as high-capacity cathode materials for magnesium-based battery. ACS Appl Mater Interfaces 9:28667–28673CrossRefGoogle Scholar
  20. 20.
    Cheng Y, Chang HJ, Hui D, Daiwon C, Sprenkle VL, Liu J, Yan Y, Li G (2016) Rechargeable Mg–Li hybrid batteries: status and challenges. J Mater Res 31:17CrossRefGoogle Scholar
  21. 21.
    Zhang Z, Xu H, Cui Z, Hu P, Chai J, Du H, He J, Zhang J, Zhou X, Han P, Cui G, Chen L (2016) High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J Mater Chem A 4:2277–2285CrossRefGoogle Scholar
  22. 22.
    Pan B, Feng Z, Sa N, Han S-D, Ma Q, Fenter P, Vaughey JT, Zhang Z, Liao C (2016) Advanced hybrid battery with a magnesium metal anode and a spinel LiMn2O4 cathode. Chem Commun 52:9961–9964CrossRefGoogle Scholar
  23. 23.
    Cheng Y, Choi D, Han KS, Mueller KT, Zhang J-G, Sprenkle VL, Liu J, Li G (2016) Toward the design of high voltage magnesium–lithium hybrid batteries using dual-salt electrolytes. Chem Commun 52:5379–5382CrossRefGoogle Scholar
  24. 24.
    Xu Y, Xu C, An Q, Wei Q, Sheng J, Xiong F, Pei C, Mai L (2017) Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. J Mater Chem A 5:13950–13956CrossRefGoogle Scholar
  25. 25.
    Pei C, Xiong F, Sheng J, Yin Y, Tan S, Wang D, Han C, An Q, Mai L (2017) VO2 nanoflakes as the cathode material of hybrid magnesium–lithium-ion batteries with high energy density. ACS Appl Mater Interfaces 9:17060–17066CrossRefGoogle Scholar
  26. 26.
    Hsu CJ, Chou CY, Yang CH, Lee TC, Chang JK (2016) MoS2/graphene cathodes for reversibly storing Mg2+ and Mg2+/Li+ in rechargeable magnesium-anode batteries. Chem Commun (Camb) 52:1701–1704CrossRefGoogle Scholar
  27. 27.
    Wang N, Yuan H, NuLi Y, Yang J, Wang J (2017) Prelithiation activates Fe2(MoO4)3 cathode for rechargeable hybrid Mg2+/Li+ batteries. ACS Appl Mater Interfaces 9:38455–38466CrossRefGoogle Scholar
  28. 28.
    Wu N, Yang ZZ, Yao HR, Yin YX, Gu L, Guo YG (2015) Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium co-intercalation. Angew Chem Int Ed Engl 54:5757–5761CrossRefGoogle Scholar
  29. 29.
    Miao X, Chen Z, Wang N, Nuli Y, Wang J, Yang J, Hirano S-i (2017) Electrospun V2MoO8 as a cathode material for rechargeable batteries with Mg metal anode. Nano Energy 34:26–35CrossRefGoogle Scholar
  30. 30.
    Sun R, Pei C, Sheng J, Wang D, Wu L, Liu S, An Q, Mai L (2018) High-rate and long-life VS2 cathodes for hybrid magnesium-based battery. Energy Storage Materials 12:61–68CrossRefGoogle Scholar
  31. 31.
    Gao T, Han F, Zhu Y, Suo L, Luo C, Xu K, Wang C (2015) Hybrid Mg2+/Li+ battery with long cycle life and high rate capability. Adv Energy Mater 5Google Scholar
  32. 32.
    Rout CS, Kim BH, Xu X, Yang J, Jeong HY, Odkhuu D, Park N, Cho J, Shin HS (2013) Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J Am Chem Soc 135:8720–8725CrossRefGoogle Scholar
  33. 33.
    Xu X, Jeong S, Rout CS, Oh P, Ko M, Kim H, Kim MG, Cao R, Shin HS, Cho J (2014) Lithium reaction mechanism and high rate capability of VS4–graphene nanocomposite as an anode material for lithium batteries. J Mater Chem A 2:10847–10853CrossRefGoogle Scholar
  34. 34.
    Wang Q, Rui K, Zhang C, Ma Z, Xu J, Sun W, Zhang W, Zhu J, Huang W (2017) Interlayer-expanded metal sulfides on graphene triggered by a molecularly self-promoting process for enhanced lithium ion storage. ACS Appl Mater Interfaces 9:40317–40323CrossRefGoogle Scholar
  35. 35.
    Wang S, Gong F, Yang S, Liao J, Wu M, Xu Z, Chen C, Yang X, Zhao F, Wang B, Wang Y, Sun X (2018) Graphene oxide-template controlled cuboid-shaped high-capacity VS4 nanoparticles as anode for sodium-ion batteries. Adv Funct Mater 28Google Scholar
  36. 36.
    Wang Y, Liu Z, Wang C, Yi X, Chen R, Ma L, Hu Y, Zhu G, Chen T, Tie Z, Ma J, Liu J, Jin Z (2018) Highly Branched VS4 Nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv Mater 30:e1802563CrossRefGoogle Scholar
  37. 37.
    Niu C, Meng J, Wang X, Han C, Yan M, Zhao K, Xu X, Ren W, Zhao Y, Xu L, Zhang Q, Zhao D, Mai L (2015) General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis. Nat Commun 6:7402CrossRefGoogle Scholar
  38. 38.
    Yang R, Zhao W, Zheng J, Zhang X, Li X (2010) One-step synthesis of carbon-coated tin dioxide nanoparticles for high lithium storage. J Phys Chem C 114:20272–20276CrossRefGoogle Scholar
  39. 39.
    Qiao H, Li R, Yu Y, Xia Z, Wang L, Wei Q, Chen K, Qiao Q (2018) Fabrication of PANI-coated ZnFe2O4 nanofibers with enhanced electrochemical performance for energy storage. Electrochim Acta 273:282–288CrossRefGoogle Scholar
  40. 40.
    Zhou Y, Li Y, Yang J, Tian J, Xu H, Yang J, Fan W (2016) Conductive polymer-coated VS4 submicrospheres as advanced electrode materials in lithium-ion batteries. ACS Appl Mater Interfaces 8:18797–18805CrossRefGoogle Scholar
  41. 41.
    Kozlova MN, Mironov YV, Grayfer ED, Smolentsev AI, Zaikovskii VI, Nebogatikova NA, Podlipskaya TY, Fedorov VE (2015) Synthesis, crystal structure, and colloidal dispersions of vanadium tetrasulfide (VS4). Chemistry 21:4639–4645CrossRefGoogle Scholar
  42. 42.
    Sun R, Wei Q, Li Q, Luo W, An Q, Sheng J, Wang D, Chen W, Mai L (2015) Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery. ACS Appl Mater Interfaces 7:20902–20908CrossRefGoogle Scholar
  43. 43.
    Weimer MS, McCarthy RF, Emery JD, Bedzyk MJ, Sen FG, Kinaci A, Chan MKY, Hock AS, Martinson ABF (2017) Template-free vapor-phase growth of patrónite by atomic layer deposition. Chem Mater 29:2864–2873CrossRefGoogle Scholar
  44. 44.
    Li X, Zhang C, Xin S, Yang Z, Li Y, Zhang D, Yao P (2016) Facile synthesis of MoS2/reduced graphene oxide@polyaniline for high-performance supercapacitors. ACS Appl Mater Interfaces 8:21373–21380CrossRefGoogle Scholar
  45. 45.
    Yu P, Zhao X, Huang Z, Li Y, Zhang Q (2014) Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J Mater Chem A 2:14413–14420CrossRefGoogle Scholar
  46. 46.
    Salvatierra RV, Moura LG, Oliveira MM, Pimenta MA, Zarbin AJG (2012) Resonant Raman spectroscopy and spectroelectrochemistry characterization of carbon nanotubes/polyaniline thin film obtained through interfacial polymerization. J Raman Spectrosc 43:1094–1100CrossRefGoogle Scholar
  47. 47.
    Qin H, Yang Z, Chen L, Chen X, Wang L (2018) A high-rate aqueous rechargeable zinc ion battery based on the VS4@rGO nanocomposite. J Mater Chem A 6:23757–23765CrossRefGoogle Scholar
  48. 48.
    Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152CrossRefGoogle Scholar
  49. 49.
    Koganei K, Sakuda A, Takeuchi T, Sakaebe H, Kobayashi H, Kageyama H, Kawaguchi T, Kiuchi H, Nakanishi K, Yoshimura M, Ohta T, Fukunaga T, Matsubara E (2018) Analysis of the discharge/charge mechanism in VS4 positive electrode material. Solid State Ionics 323:32–36CrossRefGoogle Scholar
  50. 50.
    Zhang L, Wei Q, Sun D, Li N, Ju H, Feng J, Zhu J, Mai L, Cairns EJ, Guo J (2018) Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: reversible or not reversible? Nano Energy 51:391–399CrossRefGoogle Scholar
  51. 51.
    Britto S, Leskes M, Hua X, Hebert CA, Shin HS, Clarke S, Borkiewicz O, Chapman KW, Seshadri R, Cho J, Grey CP (2015) Multiple redox modes in the reversible lithiation of high-capacity, Peierls-distorted vanadium sulfide. J Am Chem Soc 137:8499–8508CrossRefGoogle Scholar
  52. 52.
    Truong QD, Kempaiah Devaraju M, Nguyen DN, Gambe Y, Nayuki K, Sasaki Y, Tran PD, Honma I (2016) Disulfide-bridged (Mo3S11) cluster polymer: molecular dynamics and application as electrode material for a rechargeable magnesium battery. Nano Lett 16:5829–5835CrossRefGoogle Scholar
  53. 53.
    Zhang X, Wang S, Tu J, Zhang G, Li S, Tian D, Jiao S (2018) Flower-like vanadium suflide/reduced graphene oxide composite: an energy storage material for aluminum-ion batteries. ChemSusChem 11:709–715CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pengcheng Jing
    • 1
  • Huimin Lu
    • 1
    Email author
  • Wenwen Yang
    • 1
  • Yuan Cao
    • 1
  • Binbin Xu
    • 1
  • Wei Cai
    • 1
  • Yan Deng
    • 1
  1. 1.School of Materials Science and Engineering, Beihang UniversityBeijingChina

Personalised recommendations