Skip to main content

Advertisement

Log in

Fabrication of rod-like NiMoO4/CoMoO4 for application in asymmetric supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The composite supercapacitor materials can promote overall performance compared with individual materials owing to the synergistic effect. Here, we present a facile and effective method to synthesize NiMoO4/CoMoO4 nanorods by hydrothermal reaction and subsequent calcination. The as-synthesized products have both high capacitance and good stability, and successfully combine the properties of NiMoO4 and CoMoO4. NiMoO4/CoMoO4 nanorods displayed high specific capacitance of 1164 F/g at 2 A/g, and around 75% of capacitance was retained after 3000 cycles at 10 A/g. Especially, the composite materials showed excellent rate capability and around 83% of the capacitance was retained from 2 to 20 A/g. Furthermore, an asymmetric capacitor can deliver an energy density of 23.1 Wh/kg at a power density of 375 W/kg, and an energy density of 17.5 Wh/kg at a high power density of 3750 W/kg. These results indicate NiMoO4/CoMoO4 nanorods have prominent properties, which can be considered as promising material for supercapacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang J, Yu C, Fan X, Liang S, Li S, Huang H, Ling Z, Hao C, Qiu J (2016) Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy Environ Sci 9:1299–1307

    CAS  Google Scholar 

  2. Xia X, Hao Q, Lei W, Wang W, Wang H, Wang X (2012) Reduced-graphene oxide/molybdenum oxide/polyaniline ternary composite for high energy density supercapacitors: synthesis and properties. J Mater Chem 22:8314–8320

    CAS  Google Scholar 

  3. Dubal DP, Ayyad O, Ruiz V, Gómez-Romero P (2015) Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem Soc Rev 44:1777–1790

    CAS  PubMed  Google Scholar 

  4. Zhang S, Pan N (2015) Supercapacitors performance evaluation. Adv Energy Mater 5:1401401

    Google Scholar 

  5. Gao M, Wang WK, Rong Q, Jiang J, Zhang YJ, Yu HQ (2018) Porous ZnO-coated Co3O4 nanorod as a high-energy-density supercapacitor material. ACS Appl Mater Interfaces 10:23163–23173

    CAS  PubMed  Google Scholar 

  6. Chen S, Xing W, Duan J, Hu X, Qiao SZ (2013) Nanostructured morphology control for efficient supercapacitor electrodes. J Mater Chem A 1:2941–2954

    CAS  Google Scholar 

  7. Chen W, Xia C, Alshareef HN (2014) One-step electrodeposited nickel cobalt sulfide nanosheet arrays for high-performance asymmetric supercapacitors. ACS Nano 8:9531–9541

    CAS  PubMed  Google Scholar 

  8. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  PubMed  Google Scholar 

  9. Liu J, Jiang J, Cheng C, Li H, Zhang J, Gong H, Fan HJ (2011) Co3O4 Nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv Mater 23:2076–2081

    CAS  PubMed  Google Scholar 

  10. Wang Y, Lei Y, Li J, Gu L, Yuan H, Xiao D (2014) Synthesis of 3D-nanonet hollow structured Co3O4 for high capacity supercapacitor. ACS Appl Mater Interfaces 6:6739–6747

    CAS  PubMed  Google Scholar 

  11. Wang J, Zhang X, Wei Q, Lv H, Tian Y, Tong Z, Liu X, Hao J, Qu H, Zhao J, Li Y, Mai L (2016) 3D self-supported nanopine forest-like Co 3 O 4 @CoMoO 4 core–shell architectures for high-energy solid state supercapacitors. Nano Energy 19:222–233

    CAS  Google Scholar 

  12. Chen H, Hu L, Yan Y, Che R, Chen M, Wu L (2013) One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. Adv Energy Mater 3:1636–1646

    CAS  Google Scholar 

  13. Wang J, Liu S, Zhang X, Liu X, Liu X, Li N, Zhao J, Li Y (2016) A high energy asymmetric supercapacitor based on flower-like CoMoO 4/MnO 2 heterostructures and activated carbon. Electrochim Acta 213:663–671

    CAS  Google Scholar 

  14. Xu R, Lin J, Wu J, Huang M, Fan L, Xu Z, Song Z (2019) A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers. Appl Surf Sci 463:721–731

    CAS  Google Scholar 

  15. Feng Y, Liu L, Liang J, Yao W, Tian B, Jiang C, Wu W (2019) Ni(OH)2/NiMoO4 nanoplates for large-scale fully-printed flexible solid-state supercapacitors. J Power Sources 433:126676

    CAS  Google Scholar 

  16. Cai D, Liu B, Wang D, Wang L, Liu Y, Li H, Wang Y, Li Q, Wang T (2014) Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. J Mater Chem A 2:4954–4960

    CAS  Google Scholar 

  17. Zhao Y, Hu L, Zhao S, Wu L (2016) Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093

    CAS  Google Scholar 

  18. Neeraj NS, Mordina B, Srivastava AK, Mukhopadhyay K, Prasad NE (2019) Impact of process conditions on the electrochemical performances of NiMoO4 nanorods and activated carbon based asymmetric supercapacitor. Appl Surf Sci 473:807–819

    CAS  Google Scholar 

  19. Chen Y, Liu B, Liu Q, Wang J, Liu J, Zhang H, Hu S, Jing X (2015) Flexible all-solid-state asymmetric supercapacitor assembled using coaxial NiMoO 4 nanowire arrays with chemically integrated conductive coating†. Electrochim Acta 178:429–438

    CAS  Google Scholar 

  20. Mai L-Q, Yang F, Zhao Y-L, Xu X, Xu L, Luo Y-Z (2011) Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 2:381

    PubMed  Google Scholar 

  21. Balamurugan J, Li C, Peera SG, Kim NH, Lee JH (2017) High-energy asymmetric supercapacitors based on free-standing hierarchical Co-Mo-S nanosheets with enhanced cycling stability. Nanoscale 9:13747–13759

    CAS  PubMed  Google Scholar 

  22. Liu Y, Li Z, Yao L, Chen S, Zhang P, Deng L (2019) Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors. Chem Eng J 366:550–559

    CAS  Google Scholar 

  23. Yao L, Yang J, Zhang P, Deng L (2018) In situ surface decoration of Fe3C/Fe3O4/C nanosheets: towards bi-functional activated carbons with supercapacitance and efficient dye adsorption. Bioresour Technol 256:208–215

    CAS  PubMed  Google Scholar 

  24. Zhou M, Lu F, Shen X, Xia W, He H, Zeng X (2015) One-pot construction of three dimensional CoMoO4/Co3O4 hybrid nanostructures and their application in supercapacitors. J Mater Chem A 3:21201–21210

    CAS  Google Scholar 

  25. Cai D, Wang D, Liu B, Wang Y, Liu Y, Wang L, Li H, Huang H, Li Q, Wang T (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5:12905–12910

    CAS  PubMed  Google Scholar 

  26. Peng S, Li L, Wu HB, Madhavi S, Lou XWD (2015) Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. Adv Energy Mater 5:1401172

    Google Scholar 

  27. Cao Y, An L, Liao L, Liu X, Ji T, Zou R, Yang J, Qin Z, Hu J (2016) Hierarchical core/shell structures of ZnO nanorod@CoMoO4 nanoplates used as a high-performance electrode for supercapacitors. RSC Adv 6:3020–3024

    CAS  Google Scholar 

  28. Yu X, Lu B, Xu Z (2014) Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO(4)-3D graphene hybrid electrodes. Adv Mater 26:1044–1051

    CAS  PubMed  Google Scholar 

  29. Wan H, Jiang J, Ji X, Miao L, Zhang L, Xu K, Chen H, Ruan Y (2013) Rapid microwave-assisted synthesis NiMoO4·H2O nanoclusters for supercapacitors. Mater Lett 108:164–167

    CAS  Google Scholar 

  30. Liu M-C, Kong L-B, Lu C, Li X-M, Luo Y-C, Kang L (2012) Waste paper based activated carbon monolith as electrode materials for high performance electric double-layer capacitors. RSC Adv 2:1890–1896

    CAS  Google Scholar 

  31. Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3:739–745

    CAS  Google Scholar 

  32. Senthilkumar B, Meyrick D, Lee Y-S, Selvan RK (2013) Synthesis and improved electrochemical performances of nano β-NiMoO4–CoMoO4·xH2O composites for asymmetric supercapacitors. RSC Adv 3:16542–16548

    CAS  Google Scholar 

  33. Yin Z, Chen Y, Zhao Y, Li C, Zhu C, Zhang X (2015) Hierarchical nanosheet-based CoMoO4–NiMoO4 nanotubes for applications in asymmetric supercapacitors and the oxygen evolution reaction. J Mater Chem A 3:22750–22758

    CAS  Google Scholar 

  34. Zhang Z, Zhang H, Zhang X, Yu D, Ji Y, Sun Q, Wang Y, Liu X (2016) Facile synthesis of hierarchical CoMoO4@NiMoO4 core–shell nanosheet arrays on nickel foam as an advanced electrode for asymmetric supercapacitors. J Mater Chem A 4:18578–18584

    CAS  Google Scholar 

  35. Lin J, Yao L, Li Z, Zhang P, Zhong W, Yuan Q, Deng L (2019) Hybrid hollow spheres of carbon@CoxNi1−xMoO4 as advanced electrodes for high-performance asymmetric supercapacitors. Nanoscale 11:3281–3291

    CAS  PubMed  Google Scholar 

  36. Chang C, Yang X, Xiang S, Lin X, Que H, Li M (2017) Nitrogen and sulfur co-doped glucose-based porous carbon materials with excellent electrochemical performance for supercapacitors. J Electrochem Soc 164:A1601–A1607

    CAS  Google Scholar 

  37. Liu M-C, Kong L-B, Lu C, Ma X-J, Li X-M, Luo Y-C, Kang L (2013) Design and synthesis of CoMoO4–NiMoO4·xH2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1:1380–1387

    CAS  Google Scholar 

  38. Ghosh D, Giri S, Das CK (2013) Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4 . nH2O nanorods. Nanoscale 5:10428–10437

    CAS  PubMed  Google Scholar 

  39. Nti F, Anang DA, Han JI (2018) Facilely synthesized NiMoO4/CoMoO4 nanorods as electrode material for high performance supercapacitor. J Alloys Compd 742:342–350

    CAS  Google Scholar 

  40. Li Z, Zhao D, Xu C, Ning J, Zhong Y, Zhang Z, Wang Y, Hu Y (2018) Reduced CoNi 2 S 4 nanosheets with enhanced conductivity for high-performance supercapacitors. Electrochim Acta 278:33–41

    CAS  Google Scholar 

  41. Chen C, Wang S, Luo X, Gao W, Huang G, Zeng Y, Zhu Z (2019) Reduced ZnCo2O4@NiMoO4·H2O heterostructure electrodes with modulating oxygen vacancies for enhanced aqueous asymmetric supercapacitors. J Power Sources 409:112–122

    CAS  Google Scholar 

  42. Zhang X, Wei L, Guo X (2018) Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: enhanced capacitive storage and cycling performance for supercapacitors. Chem Eng J 353:615–625

    CAS  Google Scholar 

  43. Chavan HS, Hou B, Ahmed ATA, Kim J, Jo Y, Cho S, Park Y, Pawar SM, Inamdar AI, Cha SN, Kim H, Im H (2018) Ultrathin Ni-Mo oxide nanoflakes for high-performance supercapacitor electrodes. J Alloys Compd 767:782–788

    CAS  Google Scholar 

  44. Rong Q, Long LL, Zhang X, Huang YX, Yu HQ (2015) Layered cobalt nickel silicate hollow spheres as a highly-stable supercapacitor material. Appl Energy 153:63–69

    CAS  Google Scholar 

  45. Chen C, Yan D, Luo X, Gao W, Huang G, Han Z, Zeng Y, Zhu Z (2018) Construction of core–shell NiMoO4@Ni-Co-S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl Mater Interfaces 10:4662–4671

    CAS  PubMed  Google Scholar 

  46. Dai CS, Chien PY, Lin JY, Chou SW, Wu WK, Li PH, Wu KY, Lin TW (2013) Hierarchically structured Ni(3)S(2)/carbon nanotube composites as high performance cathode materials for asymmetric supercapacitors. ACS Appl Mater Interfaces 5:12168–12174

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 6061 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhang, X. & Li, G. Fabrication of rod-like NiMoO4/CoMoO4 for application in asymmetric supercapacitors. Ionics 26, 393–401 (2020). https://doi.org/10.1007/s11581-019-03221-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03221-z

Keywords

Navigation