Advertisement

Ionics

pp 1–12 | Cite as

Preparation and characterization of biopolymer K-carrageenan with MgCl2 and its application to electrochemical devices

  • P. Sangeetha
  • T. M. Selvakumari
  • S. SelvasekarapandianEmail author
  • S. R. Srikumar
  • R. Manjuladevi
  • M. Mahalakshmi
Original Paper
  • 40 Downloads

Abstract

Biopolymer electrolyte K-carrageenan with magnesium chloride (MgCl2) has been prepared by solution casting method. The amorphous nature of biopolymer is enhanced by the addition of MgCl2 salt, as revealed by XRD. FTIR spectra confirmed the complexation of K-carrageenan polymer with MgCl2. DSC technique is used to measure Tg of the membrane. The conductivity analysis shows that the1 g of K-carrageenan:0.6 M wt% of MgCl2 exhibits maximum ionic conductivity of 4.76 × 10−3 S cm−1 at room temperature. Mg2+ ion’s movement is confirmed by transference number measurement. The electrochemical stability of the electrolyte has been studied by linear sweep voltammogram (LSV). A primary magnesium battery is fabricated, and its discharge characteristics are studied.

Keywords

K-carrageenan XRD FTIR DSC AC impedance Magnesium battery 

Notes

References

  1. 1.
    Ye L,Feng Z (2010) Polymer electrolytes fundamentals and applications 551 © Wood head Publishing LimitedGoogle Scholar
  2. 2.
    Sequeira CAC, Santos DMF (2010) Polymer electrolytes fundamentals and applications 1 © Wood head Publishing LimitedGoogle Scholar
  3. 3.
    Jumaah FN, Mobarak NN, Ahmad A, Ghani MA, Rahman MYA (2014) Derivative of iotacarrageenan as solid polymer electrolyte. Ionics 21(5):1311–1320CrossRefGoogle Scholar
  4. 4.
    Azlan AL, Isa MIN (2011) Proton conducting biopolymer electrolytes based on tapioca starch-NH4NO3. Solid State Science and Technology Letters 18(1&2):124–129Google Scholar
  5. 5.
    Liew C-W, Ramesh S, Ramesh K, Arof AK (2011) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16:1869–1875CrossRefGoogle Scholar
  6. 6.
    Manjuladevi R, Christopher Selvin P, Selvasekarapandian S, Shilpa R, Moniha V (2018) Lithium ion conducting biopolymer electrolyte based on pectin doped with lithium nitrate. American Institute of Physics.  https://doi.org/10.1063/1.5029206
  7. 7.
    Vijaya N, Selvasekarapandian S, Sornalatha M, Sujithra KS, Monisha S (2016) Protonconducting biopolymer electrolytes based on pectin doped with NH4X (X=Cl, Br). J Ionics 23(10):2799–2808CrossRefGoogle Scholar
  8. 8.
    Majid SR, Arof AK (2005) Proton conducting polymer electrolyte films based on chitosan acetate complexed with NH4NO3 salt. J Phys B Condens Matter 355(1–4):78–82CrossRefGoogle Scholar
  9. 9.
    Monisha S, Selvasekarapandian S, Mathavan T, Milton Franklin Benial A, Manoharan S, Karthikeyan S (2016) Preparation and characterization of biopolymer electrolyte based on cellulose acetate for potential applications in energy storage devices. J Mater Sci 27(9):9314–9324Google Scholar
  10. 10.
    Selvalakshmi S, Mathavan T, Selvasekarapandian S, Premalatha M (2017) Effect of ethylene carbonate plasticizer on agar-agar: NH4Br-based solid polymer electrolytes. J Ionics 24(8):2209–2217CrossRefGoogle Scholar
  11. 11.
    Boopathi G, Pugalendhi S, Selvasekarapandian S, Premalatha SM, Monisha S, Aristati G (2016) Development of proton conducting biopolymer membrane based on agar–agar for fuel cell. J Ionics 23(10):2781–2790CrossRefGoogle Scholar
  12. 12.
    Aranilla CT–, Nagasawa N, AristeaBayquen ADR (2012) Synthesis & characterization of K-carrageenan carboxymethyl derivatives of Kcarrageenan. J Carbohydrate polymers 87(2):1810–1816CrossRefGoogle Scholar
  13. 13.
    Samsudin AS, Khairul M, Isa MIN (2012) Characterization on the potential of carboxy methylcellulose for application as proton conducting biopolymer electrolytes. J noncrysol 358(8):1104–1112CrossRefGoogle Scholar
  14. 14.
    van de velde F, Antipova Anna S, Rollema Harry S, Burova Tatina V, Grinbreg Nataliya V, Pereira L, paula GM, Hans Tromp R, Rudolph B, Ya G v (2005) The structure of k/l-hybrid carrageenans II.Coil-helix transition as a function of chain composition. J Carbohydrate Research 340(6):1113–1129CrossRefGoogle Scholar
  15. 15.
    Millane RP, Chandrasekaran R, Struther Arnott S, Dea ICM (1988) The molecular structure of kappa-carrageenan and comparision with iota-carrageenan. Carbohydr Res 182(1):1–17CrossRefGoogle Scholar
  16. 16.
    .Van de Velde F, De Ruiter GA (2002) Biopolymers (Vol. 6) Polysaccharide II polysaccharides from eukaryotes 247 (pp. 245–274) Wiley-VCHGoogle Scholar
  17. 17.
    Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci Mater Electron 29:17903–17920.  https://doi.org/10.1007/s10854-018-9905-3 CrossRefGoogle Scholar
  18. 18.
    Yoo, HD, Shterenberg I, Gofer Y, Gershinsky G,Pour N, Aurbach D (2013) Energy & Environ Sci 6(8) 2265, 1–27 doi: https://doi.org/10.1039/C3EE40871J, Mg rechargeable batteries: an on-going challenge
  19. 19.
    Muldoon J, Bucur CB, Oliver AG, Sugimoto T, Matsui M, Kim HS, Allred GD, Zajicek J, Kotani Y (2012) Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ Sci 5(3):5941–5950CrossRefGoogle Scholar
  20. 20.
    Mangalam R, Thamilselvan M, Selvasekarapandian S, Jayakumar S, Manjuladevi R (2016) Polyvinyl pyrrolidone/Mg(ClO4)2 solid polymer electrolyte: structural and electrical studies. J Ionics 23(10):2837–2843CrossRefGoogle Scholar
  21. 21.
    Manjuladevi R, Selvasekarapandiyan S, Tamilselvan M, Mangalam R, Moniha S, ChristopherSelvin P (2018) A study on blend polymer electrolyte based on poly(vinyl alcohol)-poly(acrylonitrile) with magnesium nitrate for magnesium battery. Ionics 24(11):3493–3506CrossRefGoogle Scholar
  22. 22.
    Ramaswamy M, Malayandi T, Subramanian S, Srinivasalu J, Rangaswamy M, Soundararajan V (2017) Development and study of solid polymer electrolyte based on polyvinyl alcohol: Mg(ClO4)2. J Polymer-Plastics Technology and Engineering 56(9):992–1002CrossRefGoogle Scholar
  23. 23.
    Shamsudin IJ, Ahmad A, Hassan NH, Kaddami H (2014) Solid biopolymer electrolyte based on κ-carrageenan for electrochemical devices application. Asian J Chem 26:S77–S80CrossRefGoogle Scholar
  24. 24.
    Liew JWY, Loh KS, Ahmad A, Lim KL, Wan Daud WR, Liew JWY (2017) Synthesis and characterization of modified κ-carrageenan for enhanced proton conductivity as polymer electrolyte membrane. J Plos One 12(9):e0185313CrossRefGoogle Scholar
  25. 25.
    Christopher Selvin P, Perumal P, Selvasekarapandian S, Monisha S, Boopathi G, Leena Chandra MV (2018) Study of proton-conducting polymer electrolyte based on K-carrageenan and NH4SCN for electrochemical devices. Ionics 24:3535–3542.  https://doi.org/10.1007/s11581-018-2521-7 CrossRefGoogle Scholar
  26. 26.
    Hodge RM, Edward GH, Simon GP (1996) Water absorption and states of water in semi crystalline poly (vinyl alcohol) films. Polymer 37(8):1371–1376CrossRefGoogle Scholar
  27. 27.
    Monihaa V, Alagar M, Selvasekarapandian S, Sundaresan B, Boopathi G (2018) Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. J Non-Crystalline Solids 481:424–434CrossRefGoogle Scholar
  28. 28.
    Ramaswamy M, ThamilselvanMalayandi SS, Srinivasalu J, Rangaswamy M (2017) Magnesium ion conducting polyvinyl alcohol – polyvinyl pyrrolidone – based blend polymer electrolyte. J.Ionics 23(7):1771–1781.  https://doi.org/10.1007/s11581-017-2023-z CrossRefGoogle Scholar
  29. 29.
    NirmalaDevi G, Chitra S, Selvasekarapandian S, Premalatha M, Monisha S, Saranya J (2017) Synthesis and characterization of dextrin-based polymer electrolytes for potential applications in energy storage devices. Ionics 23(12):3377–3388CrossRefGoogle Scholar
  30. 30.
    Nithya S, Selvasekarapandian S, Premalatha M (2016) Synthesis and characterization of proton-conducting polymer electrolyte based on polyacrylonitrile (PAN). Ionics 23(10):2767–2774CrossRefGoogle Scholar
  31. 31.
    Wagner JB, Wagner CJ (1957) Electrical conductivity measurements on cuprous halides. J Chem Phys 26:1597–1601CrossRefGoogle Scholar
  32. 32.
    Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. J Polymer 28(13):2324–2328CrossRefGoogle Scholar
  33. 33.
    Tian Khoon L, Ataollahi N, Hassan NH, Ahmad A (2016) Studies of porous solid polymeric electrolytes based on poly (vinylidene fluoride) and poly (methyl methacrylate) grafted natural rubber for applications in electrochemical devices. J Solid State Electrochem 20(1):203–213CrossRefGoogle Scholar
  34. 34.
    ShanmugaPriya S, Karthika M, Selvasekarapandian S, Manjuladevi R, Monisha S (2018) Study of biopolymer I-carrageenan with magnesium perchlorate. J Ionics 24(12):3861–3875CrossRefGoogle Scholar
  35. 35.
    Karthikeyan S, Selvasekarapandian S, Premalatha M, Monisha S, Boopathi G, Aristatil G, Arun A, Madeswaran S (2016) Proton-conducting I-carrageenan-based biopolymer electrolyte for fuel cell application. Ionics 23(10):2775–2780CrossRefGoogle Scholar
  36. 36.
    Woo HJ, Majid SR, Arof AK (2012) Dielectric properties and morphology of polymer electrolyte based on poly(ε-caprolactone) and ammonium thiocyanate. J Materials Chemistry and Physics 134:755–761CrossRefGoogle Scholar
  37. 37.
    Ramesh S, Yahaya AH, Arof AK (2002) Dielectric behaviour of PVC-based polymer electrolytes. Solid State Ionics 152–153:291–294CrossRefGoogle Scholar
  38. 38.
    Ponmani S, Kalaiselvimary J, Ramesh Prabhu M (2018) Structural, electrical, and electrochemical properties of poly (vinylidene fluoride-co-hexaflouro propylene)/poly(vinyl acetate)-based polymer blend electrolytes for rechargeable magnesium ion batteries. J Solid State Electrochem 22(8):2605–2615CrossRefGoogle Scholar
  39. 39.
    Manjuladevi R, Tamilselvan M, Selvasekarapandian S, Christopher Selvin P, Mangalam R, Monisha S (2017) Preparation and characterization of blend polymer electrolyte film based on poly(vinyl alcohol)-poly(acrylonitrile)/MgCl2 for energy storage devices. J Ionics 24(4):1083–1095CrossRefGoogle Scholar
  40. 40.
    Reddy CVS, Sharma AK, Rao VN (2003) Conductivity and discharge characteristics of polyblend (PVP+PVA+KIO 3) electrolyte. J Power Sources 114(2):338–345CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Sangeetha
    • 1
    • 2
  • T. M. Selvakumari
    • 2
  • S. Selvasekarapandian
    • 1
    • 3
    Email author
  • S. R. Srikumar
    • 4
  • R. Manjuladevi
    • 5
  • M. Mahalakshmi
    • 6
  1. 1.Materials Research CentreCoimbatoreIndia
  2. 2.Arulmigu Palani Andavar Arts College for WomenPalaniIndia
  3. 3.Department of PhysicsBharathiyar UniversityCoimbatoreIndia
  4. 4.Department of PhysicsKalasalingam Academy of Research and EducationSrivilliputhurIndia
  5. 5.Department of PhysicsPSG College of Arts and ScienceCoimbatoreIndia
  6. 6.Sri Meenakshi Govt. Arts College for WomenMaduraiIndia

Personalised recommendations