Skip to main content

Advertisement

Log in

Dense integration of graphene paper positive electrode materials for aluminum-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Although Al-ion battery is attracting researchers’ attention worldwide, its volumetric energy density was not so promising due to low density of graphite-based positive electrodes in the current published literatures. Thus, defect-free yet densely packed graphene electrodes with high electronic conductivity and fast ionic diffusion are crucial to the realization of compacted Al-ion batteries with high volumetric energy density. In the present work, a self-supported and defect-free graphene-positive electrode (RHG-P-2850) was successfully produced by a hydriodic acid reduction of the graphene oxide (GO) method, followed by an ultrahigh temperature (2850 °C) annealing treatment. The density of the RHG-P-2850 (0.32 g cm−3) is currently the highest positive electrode material in the preparation of graphene-positive electrodes from GO. RHG-P-2850 positive electrode enables to deliver considerably high specific capacity 27.1 mAh cm−3 (85 mAh g−1) at the current density 2 A g−1. More importantly, a remarkably stable performance was achieved with 20% fading over 8000 cycles. The results enlighten and promote the design and preparation of densely packed graphene-positive electrode to develop high-performance Al/graphene battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon JM (2010) Is lithium the new gold? Nat Chem 2(6):510

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111(5):3577–3613

    Article  CAS  Google Scholar 

  3. Zhou H, Wang X, Chen D (2015) Li-metal-free prelithiation of Si-based negative electrodes for full Li-ion batteries. Chemsuschem 8(16):2737–2744

    Article  CAS  Google Scholar 

  4. Mokhtar M, Talib MZM, Majlan EH, Tasirin SM, Wan MFWR, Wan RWD, Sahari J (2015) Recent developments in materials for aluminum–air batteries: a review. J Ind Eng Chem 32:1–20

    Article  CAS  Google Scholar 

  5. Marsh C, Licht S (1994) A novel aqueous dual-channel aluminum-hydrogen peroxide battery. J Electrochem Soc 141(6):L61–L63

    Article  CAS  Google Scholar 

  6. Peramunage D, Dillon R, Licht S (1993) Investigation of a novel aqueous aluminum/sulfur battery. J Power Sources 45(3):311–323

    Article  CAS  Google Scholar 

  7. Sivashanmugam A, Prasad SR, Thirunakaran R, Gopukumar S (2008) Electrochemical performance of Al∕MnO[sub 2] dry cells: an alternative to Leclanche dry cells. J Electrochem Soc 155(10):A725

    Article  CAS  Google Scholar 

  8. Dymek C J, Williams J L, Groeger D J, et al. (1984) An Aluminum Acid-Base Concentration Cell Using Room Temperature Chloroaluminate Ionic Liquids. J Electrochem Soc 131(12):2887–2892

    Article  CAS  Google Scholar 

  9. Gao T, Li X, Wang X, Hu J, Han F, Fan X, Suo L, Pearse AJ, Lee SB, Rubloff GW, Gaskell KJ, Noked M, Wang C (2016) A rechargeable Al/S battery with an ionic-liquid electrolyte. Angew Chem Int Ed Eng 55(34):9898–9901

    Article  CAS  Google Scholar 

  10. Hu Y, Ye D, Luo B, Hu H, Zhu X, Wang S, Li L, Peng S, Wang L (2018) A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries. Adv Mater 30(2):1703824

    Article  Google Scholar 

  11. Wang S, Jiao S, Wang J, Chen HS, Tian D, Lei H, Fang DN (2016) High-performance aluminum-ion battery with CuS@C microsphere composite cathode. ACS Nano 11(1):469–477

    Article  CAS  Google Scholar 

  12. Yu Z, Kang Z, Hu Z, Lu J, Zhou Z, Jiao S (2016) Hexagonal NiS nanobelts as advanced cathode materials for rechargeable Al-ion batteries. Chem Commun 52(68):10427–10430

    Article  CAS  Google Scholar 

  13. Mori T, Orikasa Y, Nakanishi K, Kezheng C, Hattori M, Ohta T, Uchimoto Y (2016) Discharge/charge reaction mechanisms of FeS 2 cathode material for aluminum rechargeable batteries at 55°C. J Power Sources 313:9–14

    Article  CAS  Google Scholar 

  14. Gu S, Wang H, Wu C, Bai Y, Li H, Wu F (2017) Confirming reversible Al 3+ storage mechanism through intercalation of Al3+ into V2O5 nanowires in a rechargeable aluminum battery. Energy Storage Mater 6:9–17.

  15. Wang H, Bai Y, Chen S, Luo X, Wu C, Wu F, Lu J, Amine K (2015) Binder-free V2O5 cathode for greener rechargeable aluminum battery. ACS Appl Mater Interfaces 7(1):80–84

    Article  CAS  Google Scholar 

  16. Kazazi M, Abdollahi P, Mirzaei-Moghadam M (2017) High surface area TiO2 nanospheres as a high-rate anode material for aqueous aluminium-ion batteries. Solid State Ionics 300:32–37

    Article  CAS  Google Scholar 

  17. Choi S, Go H, Lee G, Tak Y (2017) Electrochemical properties of an aluminum anode in an ionic liquid electrolyte for rechargeable aluminum-ion batteries. Phys Chem Chem Phys 19(13):8653–8656

    Article  CAS  Google Scholar 

  18. Wang DY, Wei CY, Lin MC, Pan CJ, Chou HL, Chen HA, Gong M, Wu Y, Yuan C, Angell M, Hsieh YJ, Chen YH, Wen CY, Chen CW, Hwang BJ, Chen CC, Dai H (2017) Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun 8:14283

    Article  CAS  Google Scholar 

  19. Zafar ZA, Imtiaz S, Li R, Zhang J, Razaq R, Xin Y, Li Q, Zhang Z, Huang Y (2018) A super-long life rechargeable aluminum battery. Solid State Ionics 320:70–75

    Article  CAS  Google Scholar 

  20. Zhang L, Chen L, Luo H, Zhou X, Liu Z (2017) Large-sized few-layer graphene enables an ultrafast and long-life aluminum-ion battery. Adv Energy Mater 7(15):1700034

    Article  Google Scholar 

  21. Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520(7547):325–328

    Article  Google Scholar 

  22. Qiao J, Zhou H, Liu Z, Wen H, Yang J (2019) Defect-free soft carbon as cathode material for Al-ion batteries. Ionics 25(3):1235–1242

    Article  CAS  Google Scholar 

  23. Yu X, Manthiram A (2017) Electrochemical energy storage with a reversible nonaqueous room-temperature aluminum-sulfur chemistry. Adv Energy Mater 7(18):1700561

    Article  Google Scholar 

  24. Chen H, Xu H, Wang S, Huang T, Xi J, Cai S, Guo F, Xu Z, Gao W, Gao C (2017) Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life. Sci Adv 3(12):eaao7233

    Article  Google Scholar 

  25. Gao Y, Zhu C, Chen Z, Lu G (2017) Understanding ultrafast rechargeable aluminum-ion battery from first-principles. J Phys Chem C 121(13):7131–7138

    Article  CAS  Google Scholar 

  26. Bhauriyal P, Mahata A, Pathak B (2017) The staging mechanism of AlCl4 intercalation in a graphite electrode for an aluminium-ion battery. Phys Chem Chem Phys 19(11):7980–7989

    Article  CAS  Google Scholar 

  27. Jung SC, Kang Y, Yoo D, Choi JW, Han Y (2016) Flexible few-layered graphene for the ultrafast rechargeable aluminum-ion battery. J Phys Chem C 120(25):13384–13389

    Article  CAS  Google Scholar 

  28. Wang P, Chen H, Li N, Zhang X, Jiao S, Song W, Fang D (2018) Dense graphene papers: toward stable and recoverable Al-ion battery cathodes with high volumetric and areal energy and power density. Energy Storage Mater 13:103–111

    Article  Google Scholar 

  29. Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228

    Article  CAS  Google Scholar 

  30. Pei S, Zhao J, Du J, Ren W, Cheng H-M (2010) Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 48(15):4466–4474

    Article  CAS  Google Scholar 

  31. Cui P, Lee J, Hwang E, Lee H (2011) One-pot reduction of graphene oxide at subzero temperatures. Chem Commun 47(45):12370–12372

    Article  CAS  Google Scholar 

  32. Luo D, Zhang G, Liu J, Sun X (2011) Evaluation criteria for reduced graphene oxide. J Phys Chem C 115(23):11327–11335

    Article  CAS  Google Scholar 

  33. Chen H, Guo F, Liu Y, Huang T, Zheng B, Ananth N, Xu Z, Gao W, Gao C (2017) A defect-free principle for advanced graphene cathode of aluminum-ion battery. Adv Mater 29(12):1605958

    Article  Google Scholar 

  34. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3(2):101–105

    Article  CAS  Google Scholar 

  35. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448(7152):457–460

    Article  CAS  Google Scholar 

  36. Vallés C, David Núñez J, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50(3):835–844

    Article  Google Scholar 

  37. Childress AS, Parajuli P, Zhu J, Podila R, Rao AM (2017) A Raman spectroscopic study of graphene cathodes in high-performance aluminum ion batteries. Nano Energy 39:69–76

    Article  CAS  Google Scholar 

  38. Wu Y, Gong M, Lin MC, Yuan C, Angell M, Huang L, Wang DY, Zhang X, Yang J, Hwang BJ, Dai H (2016) 3D graphitic foams derived from chloroaluminate anion intercalation for ultrafast aluminum-ion battery. Adv Mater 28(41):9218–9222

    Article  CAS  Google Scholar 

  39. Huang X, Liu Y, Zhang H, Zhang J, Noonan O, Yu C (2017) Free-standing monolithic nanoporous graphene foam as a high performance aluminum-ion battery cathode. J Mater Chem A 5(36):19416–19421

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Jiangsu University (5501670001); the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB430010); and the Dual Creative Doctoral Project of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiao, J., Zhou, H., Liu, Z. et al. Dense integration of graphene paper positive electrode materials for aluminum-ion battery. Ionics 26, 245–254 (2020). https://doi.org/10.1007/s11581-019-03170-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03170-7

Keywords

Navigation