Skip to main content

Synthesis and physical properties of new low-viscosity sulfonium ionic liquids

Abstract

Several new sulfonium ionic liquids (ILs) with dicyanamide ([DCA]) and bis(trifluoromethylsulfonyl)imide ([TFSI]) counter anions have been synthesized. Their viscosity and ionic conductivity values were determined. The ILs with [DCA] were previously prepared by the metathesis reaction involving silver dicyanamide (AgDCA). We report here a very convenient and much less expensive method using an ion-exchange resin. The structures of these ILs have been confirmed by 1H-NMR, 13C-NMR, and elemental analysis. Some of these sulfonium ILs displayed low viscosity (< 30 cP) and high ionic conductivity (> 10 mS cm−1). A concluding remark on structure-property relationship has also been drawn involving alicyclic and cyclic sulfonium cations vs. [DCA] and [TFSI] anions.

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

References

  1. Xiang J, Wu F, Chen R, Li L, Yu H (2013) High voltage and safe electrolytes based on ionic liquid and sulfone for lithium-ion batteries. J Power Sources 233:115–120. https://doi.org/10.1016/j.jpowsour.2013.01.123

    CAS  Article  Google Scholar 

  2. Guerfi A, Dontigny M, Charest P, Petitclerc M, Lagacé M, Vijh A, Zaghib K (2010) Improved electrolytes for Li-ion batteries: mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance. J Power Sources 195:845–852. https://doi.org/10.1016/j.jpowsour.2009.08.056

    CAS  Article  Google Scholar 

  3. Jin Y, Fang S, Chai M, Yang L, Tachibana K, Hirano SI (2013) Properties and application of ether-functionalized trialkylimidazolium ionic liquid electrolytes for lithium battery. J Power Sources 226:210–218. https://doi.org/10.1016/j.jpowsour.2012.10.076

    CAS  Article  Google Scholar 

  4. Reale P, Fernicola A, Scrosati B (2009) Compatibility of the Py24TFSI–LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes. J Power Sources 194:182–189. https://doi.org/10.1016/j.jpowsour.2009.05.016

    CAS  Article  Google Scholar 

  5. Abouimrane A, Belharouak I, Amine K (2009) Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem Commun 11:1073–1076. https://doi.org/10.1016/j.elecom.2009.03.020

    CAS  Article  Google Scholar 

  6. Shao N, Sun X-G, Dai S, Jiang D (2012) Oxidation potentials of functionalized sulfone solvents for high-voltage Li-ion batteries: a computational study. J Phys Chem B 116:3235–3238. https://doi.org/10.1021/jp211619y

    CAS  Article  PubMed  Google Scholar 

  7. Li M, Liao Y, Liu Q, Xu J, Sun P, Shi H, Li W (2018) Application of the imidazolium ionic liquid based nano-particle decorated gel polymer electrolyte for high safety lithium ion battery. Electrochim Acta 284:188–201. https://doi.org/10.1016/j.electacta.2018.07.140

    CAS  Article  Google Scholar 

  8. Wu F, Zhu Q, Chen R, Chen N, Chen Y, Li L (2015) Ionic liquid electrolytes with protective lithium difluoro(oxalate)borate for high voltage lithium-ion batteries. Nano Energy 13:546–553. https://doi.org/10.1016/j.nanoen.2015.03.042

    CAS  Article  Google Scholar 

  9. Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194:601–609. https://doi.org/10.1016/j.jpowsour.2009.06.089

    CAS  Article  Google Scholar 

  10. Wolff C, Jeong S, Paillard E, Balducci A, Passerini S (2015) High power, solvent-free electrochemical double layer capacitors based on pyrrolidinium dicyanamide ionic liquids. J Power Sources 293:65–70. https://doi.org/10.1016/j.jpowsour.2015.05.065

    CAS  Article  Google Scholar 

  11. Mousavi MPS, Wilson BE, Kashefolgheta S, Anderson EL, He S, Bühlmann P, Stein A (2016) Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy. ACS Appl Mater Interfaces 8:3396–3406. https://doi.org/10.1021/acsami.5b11353

    CAS  Article  PubMed  Google Scholar 

  12. Karu K, Ruzanov A, Ers H, Ivaništšev V, Lage-Estebanez I, García de la Vega J (2016) Predictions of physicochemical properties of ionic liquids with DFT. Computation 4:25. https://doi.org/10.3390/computation4030025

    CAS  Article  Google Scholar 

  13. Fletcher SI, Sillars FB, Hudson NE, Hall PJ (2010) Physical properties of selected ionic liquids for use as electrolytes and other industrial applications. J Chem Eng Data 55:778–782. https://doi.org/10.1021/je900405j

    CAS  Article  Google Scholar 

  14. Han H-B, Nie J, Liu K, Li WK, Feng WF, Armand M, Matsumoto H, Zhou ZB (2010) Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim Acta 55:1221–1226. https://doi.org/10.1016/j.electacta.2009.10.019

    CAS  Article  Google Scholar 

  15. Turner DR, Chesman ASR, Murray KS, Deacon GB, Batten SR (2011) The chemistry and complexes of small cyano anions. Chem Commun 47:10189. https://doi.org/10.1039/c1cc11909e

    CAS  Article  Google Scholar 

  16. Li Y-S, Sun I-W, Chang J-K, Su CJ, Lee MT (2012) Doped butylmethylpyrrolidinium–dicyanamide ionic liquid as an electrolyte for MnO2 supercapacitors. J Mater Chem 22:6274. https://doi.org/10.1039/c2jm16391h

    CAS  Article  Google Scholar 

  17. Chang JK, Lee MT, Tsai WT, Deng MJ, Sun IW (2009) X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy studies on reversible insertion/desertion of dicyanamide anions into/from manganese oxide in ionic liquid. Chem Mater 21:2688–2695. https://doi.org/10.1021/cm9000569

    CAS  Article  Google Scholar 

  18. Lee MT, Li YS, Sun IW, Chang JK (2014) Pseudocapacitive behavior of manganese oxide in lithium-ion-doped butylmethylpyrrolidinium-dicyanamide ionic liquid investigated using in situ X-ray absorption spectroscopy. J Power Sources 246:269–276. https://doi.org/10.1016/j.jpowsour.2013.07.088

    CAS  Article  Google Scholar 

  19. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539. https://doi.org/10.1039/c5cs00303b

    CAS  Article  PubMed  Google Scholar 

  20. Chang J-K, Lee M-T, Cheng C-W, Tsai WT, Deng MJ, Hsieh YC, Sun IW (2009) Pseudocapacitive behavior of Mn oxide in aprotic 1-ethyl-3-methylimidazolium–dicyanamide ionic liquid. J Mater Chem 19:3732. https://doi.org/10.1039/b819839j

    CAS  Article  Google Scholar 

  21. Gerhard D, Alpaslan SC, Gores HJ, Uerdingen M, Wasserscheid P (2005) Trialkylsulfonium dicyanamides - a new family of ionic liquids with very low viscosities. Chem Commun:5080–5082. https://doi.org/10.1039/b510736a

  22. Pandian S, Raju SG, Hariharan KS, Kolake SM, Park DH, Lee MJ (2015) Functionalized ionic liquids as electrolytes for lithium-ion batteries. J Power Sources 286:204–209. https://doi.org/10.1016/j.jpowsour.2015.03.130

    CAS  Article  Google Scholar 

  23. Zhang Q, Liu S, Li Z, Li J, Chen Z, Wang R, Lu L, Deng Y (2009) Novel cyclic sulfonium-based ionic liquids: synthesis, characterization, and physicochemical properties. Chem Eur J 15:765–778. https://doi.org/10.1002/chem.200800610

    CAS  Article  PubMed  Google Scholar 

  24. Zhao D, Fei Z, Ang W, Dyson P (2007) Sulfonium-based ionic liquids incorporating the allyl functionality. Int J Mol Sci 8:304–315. https://doi.org/10.3390/i8040304

    CAS  Article  PubMed Central  Google Scholar 

  25. Tsunashima K, Kodama S, Sugiya M, Kunugi Y (2010) Physical and electrochemical properties of room-temperature dicyanamide ionic liquids based on quaternary phosphonium cations. Electrochim Acta 56:762–766. https://doi.org/10.1016/j.electacta.2010.08.106

    CAS  Article  Google Scholar 

  26. Murray SM, Zimlich TK, Mirjafari A, O’Brien RA, Davis JH Jr, West KN (2013) Thermophysical properties of imidazolium-based lipidic ionic liquids. J Chem Eng Data 58:1516–1522. https://doi.org/10.1021/je301004f

    CAS  Article  Google Scholar 

  27. Wang H, Yoshio M (2010) Effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors. J Power Sources 195:389–392. https://doi.org/10.1016/j.jpowsour.2009.06.097

    CAS  Article  Google Scholar 

  28. Yang L, Furczon MM, Xiao A, Lucht BL, Zhang Z, Abraham DP (2010) Effect of impurities and moisture on lithium bisoxalatoborate (LiBOB) electrolyte performance in lithium-ion cells. J Power Sources 195:1698–1705. https://doi.org/10.1016/j.jpowsour.2009.09.056

    CAS  Article  Google Scholar 

  29. Randström S, Montanino M, Appetecchi GB, Lagergren C, Moreno A, Passerini S (2008) Effect of water and oxygen traces on the cathodic stability of N-alkyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide. Electrochim Acta 53:6397–6401. https://doi.org/10.1016/j.electacta.2008.04.058

    CAS  Article  Google Scholar 

  30. Liu Q, Janssen MHA, Van Rantwijk F, Sheldon RA (2005) Room-temperature ionic liquids that dissolve carbohydrates in high concentrations. Green Chem 7:39–42. https://doi.org/10.1039/b412848f

    CAS  Article  Google Scholar 

  31. Srour H, Rouault H, Santini CC, Chauvin Y (2013) A silver and water free metathesis reaction: a route to ionic liquids. Green Chem 15:1341. https://doi.org/10.1039/c3gc37034h

    CAS  Article  Google Scholar 

  32. Mei X, Yue Z, Tufts J, Dunya H, Mandal BK (2018) Synthesis of new fluorine-containing room temperature ionic liquids and their physical and electrochemical properties. J Fluor Chem 212:26–37. https://doi.org/10.1016/j.jfluchem.2018.05.008

    CAS  Article  Google Scholar 

  33. Rennie AJR, Martins VL, Torresi RM, Hall PJ (2015) Ionic liquids containing Sulfonium cations as electrolytes for electrochemical double layer capacitors. J Phys Chem C 119:23865–23874. https://doi.org/10.1021/acs.jpcc.5b08241

    CAS  Article  Google Scholar 

  34. Coadou E, Goodrich P, Neale AR, Timperman L, Hardacre C, Jacquemin J, Anouti M (2016) Synthesis and thermophysical properties of ether-functionalized sulfonium ionic liquids as potential electrolytes for electrochemical applications. ChemPhysChem 17:3992–4002. https://doi.org/10.1002/cphc.201600882

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Yue Z, Dunya H, Aryal S, Segre CU, Mandal B (2018) Synthesis and electrochemical properties of partially fluorinated ether solvents for lithium sulfur battery electrolytes. J Power Sources 401:271–277. https://doi.org/10.1016/j.jpowsour.2018.08.097

    CAS  Article  Google Scholar 

  36. Dinarès I, Garcia de Miguel C, Ibáñez A, Mesquida N, Alcalde E (2009) Imidazolium ionic liquids: a simple anion exchange protocol. Green Chem 11:1507. https://doi.org/10.1039/b915743n

    CAS  Article  Google Scholar 

  37. MacFarlane DR, Golding J, Forsyth S et al (2001) Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chem Commun:1430–1431. https://doi.org/10.1039/b103064g

  38. MacFarlane DR, Forsyth SA, Golding J, Deacon GB (2002) Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chem 4:444–448. https://doi.org/10.1039/b205641k

    CAS  Article  Google Scholar 

  39. Yoshida Y, Baba O, Larriba C, Saito G (2007) Imidazolium-based ionic liquids formed with dicyanamide anion: influence of cationic structure on ionic conductivity. J Phys Chem B 111:12204–12210. https://doi.org/10.1021/jp0745236

    CAS  Article  PubMed  Google Scholar 

  40. Yoshida Y, Baba O, Saito G (2007) Ionic liquids based on dicyanamide anion: influence of structural variations in cationic structures on ionic conductivity †. J Phys Chem B 111:4742–4749. https://doi.org/10.1021/jp067055t

    CAS  Article  PubMed  Google Scholar 

  41. Marcilla A, Ruiz F, García AN (1995) Liquid-liquid-solid equilibria of the quaternary system water-ethanol-acetone-sodium chloride at 25 °C. Fluid Phase Equilib 112:273–289. https://doi.org/10.1016/0378-3812(95)02804-N

    CAS  Article  Google Scholar 

  42. Solgy M, Taghizadeh M, Ghoddocynejad D (2015) Adsorption of uranium(VI) from sulphate solutions using Amberlite IRA-402 resin: equilibrium, kinetics and thermodynamics study. Ann Nucl Energy 75:132–138. https://doi.org/10.1016/j.anucene.2014.08.009

    CAS  Article  Google Scholar 

  43. Levchuk I, Rueda Márquez JJ, Sillanpää M (2018) Removal of natural organic matter (NOM) from water by ion exchange – a review. Chemosphere 192:90–104. https://doi.org/10.1016/j.chemosphere.2017.10.101

    CAS  Article  PubMed  Google Scholar 

  44. Jaeger F, Matar OK, Müller EA (2018) Bulk viscosity of molecular fluids. J Chem Phys 148:174504. https://doi.org/10.1063/1.5022752

    CAS  Article  PubMed  Google Scholar 

  45. Zhang J, Fang S, Qu L, Jin Y, Yang L, Hirano SI (2014) Synthesis, characterization, and properties of ether-functionalized 1,3-dialkylimidazolium ionic liquids. Ind Eng Chem Res 53:16633–16643. https://doi.org/10.1021/ie502716p

    CAS  Article  Google Scholar 

  46. Fang S, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56:4663–4671. https://doi.org/10.1016/j.electacta.2011.02.107

    CAS  Article  Google Scholar 

  47. Izgorodina EI, Bernard UL, Macfarlane DR (2009) Ion-pair binding energies of ionic liquids : can DFT compete with ab initio-based methods ? 7064–7072

  48. Grimme S, Hujo W, Kirchner B (2012) Performance of dispersion-corrected density functional theory for the interactions in ionic liquids. Phys Chem Chem Phys 14:4875. https://doi.org/10.1039/c2cp24096c

    CAS  Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braja K. Mandal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yue, Z., Dunya, H., Mei, X. et al. Synthesis and physical properties of new low-viscosity sulfonium ionic liquids. Ionics 25, 5979–5989 (2019). https://doi.org/10.1007/s11581-019-03133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03133-y

Keywords

  • Ionic liquids
  • Ion-exchange resins
  • Sulfonium cation
  • TFSI anion
  • DCA anion
  • Li-ion battery electrolytes