Skip to main content

Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose

Abstract

In the present work, nitrogen-doped three-dimensional (3D) hierarchical ordered mesoporous carbon supported palladium (Pd 20 wt%/N-3D) electrocatalyst was successfully synthesized with the nanocasting method. The as-prepared material was physicochemically and electrochemically characterized. It is found that the as-prepared electrocatalyst exhibits a hierarchically porous structure with interconnected walls, which permits the exposure of more active sites to the respective reactant. Due to its special structure, the electrocatalyst (i) is highly poison-tolerant to the intermediates of glucose electrooxidation reaction, (ii) presents high activity for ascorbic acid electrooxidation, and (iii) exhibits a moderate activity to dopamine electrooxidation reaction. The as-prepared electrocatalyst displayed a relatively good stability behavior. Its sensitivity range is reported to be 0.990 μA μM−1 cm−2, 0.38 μA μM−1 cm−2, and 0.09 μA μM−1 cm−2 for ascorbic acid, dopamine, and glucose, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Li S, Ma Y, Liu Y, Xin G, Wang M, Zhang Z, Liu Z (2019) Electrochemical sensor based on a three dimensional nanostructured MoS 2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv 9:2997–3003

    CAS  Google Scholar 

  2. Giovannoni G, O'sullivan J, Turner K, Manson A, Lees A (2000) Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies, Journal of Neurology. Neurosurgery & Psychiatry 68:423–428

    CAS  Google Scholar 

  3. Turley S, West C, Horton B (1976) The role of ascorbic acid in the regulation of cholesterol metabolism and in the pathogenesis of atherosclerosis. Atherosclerosis 24:1–18

    CAS  PubMed  Google Scholar 

  4. Yan L, Brouzgou A, Meng Y, Xiao M, Tsiakaras P, Song S (2014) Efficient and poison-tolerant PdxAuy/C binary electrocatalysts for glucose electrooxidation in alkaline medium. Appl Catal B Environ 150-151:268–274

    CAS  Google Scholar 

  5. Brouzgou A, Tsiakaras P (2015) Electrocatalysts for glucose electrooxidation reaction: a review. Top Catal 58:1311–1327

    CAS  Google Scholar 

  6. Brouzgou A, Song S, Tsiakaras P (2014) Carbon-supported PdSn and Pd3Sn2 anodes for glucose electrooxidation in alkaline media. Appl Catal B Environ 158:209–216

    Google Scholar 

  7. Yang H, Zhao J, Qiu M, Sun P, Han D, Niu L, Cui G (2019) Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosens Bioelectron 124:191–198

    PubMed  Google Scholar 

  8. Savk A, Özdil B, Demirkan B, Nas MS, Calimli MH, Alma MH, Asiri AM, Şen F (2019) Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater Sci Eng C 99:248–254

    CAS  Google Scholar 

  9. Gao J, Huang W, Chen Z, Yi C, Jiang L (2019) Simultaneous detection of glucose, uric acid and cholesterol using flexible microneedle electrode array-based biosensor and multi-channel portable electrochemical analyzer. Sensors Actuators B Chem 287:102–110

    CAS  Google Scholar 

  10. Gao S, Li H, Li M, Li C, Qian L, Yang B (2018) A gold-nanoparticle/horizontal-graphene electrode for the simultaneous detection of ascorbic acid, dopamine, uric acid, guanine, and adenine. J Solid State Electrochem 22:3245–3254

    CAS  Google Scholar 

  11. Aparna T, Sivasubramanian R, Dar MA (2018) One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J Alloys Compd 741:1130–1141

    CAS  Google Scholar 

  12. Wang M, Cui M, Liu W, Liu X (2019) Highly dispersed conductive polypyrrole hydrogels as sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid. J Electroanal Chem 832:174–181

    CAS  Google Scholar 

  13. Wang Y, Yang T, Hasebe Y, Zhang Z, Tao D (2018) Carbon black-carbon nanotube co-doped polyimide sensors for simultaneous determination of ascorbic acid, uric acid, and dopamine. Materials 11:1691

    PubMed Central  Google Scholar 

  14. Liu L, Liu L, Wang Y, Ye B-C (2019) A novel electrochemical sensor based on bimetallic metal–organic framework-derived porous carbon for detection of uric acid. Talanta 199:478–484

    CAS  PubMed  Google Scholar 

  15. Zhao Y, Zhou J, Jia Z, Huo D, Liu Q, Zhong D, Hu Y, Yang M, Bian M, Hou C (2019) In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim Acta 186:92

    Google Scholar 

  16. Jiang L-C, Zhang W-D (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    CAS  PubMed  Google Scholar 

  17. Ragupathy D, Gopalan AI, Lee K-P (2010) Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube–silica network–gold nanoparticles based nanohybrid modified electrode. Sensors Actuators B Chem 143:696–703

    CAS  Google Scholar 

  18. Yuan M, Liu A, Zhao M, Dong W, Zhao T, Wang J, Tang W (2014) Bimetallic PdCu nanoparticle decorated three-dimensional graphene hydrogel for non-enzymatic amperometric glucose sensor. Sensors Actuators B Chem 190:707–714

    CAS  Google Scholar 

  19. Meng Z, Cai S, Wang R, Tang H, Song S, Tsiakaras P (2019) Bimetallic−organic framework-derived hierarchically porous Co-Zn-N-C as efficient catalyst for acidic oxygen reduction reaction. Appl Catal B Environ 244:120–127

    CAS  Google Scholar 

  20. Lei H-Y, Piao J-H, Brouzgou A, Gorbova E, Tsiakaras P, Liang Z-X (2019) Synthesis of nitrogen-doped mesoporous carbon nanosheets for oxygen reduction electrocatalytic activity enhancement in acid and alkaline media. Int J Hydrog Energy 44:4423–4431

    CAS  Google Scholar 

  21. Niu X, Lan M, Zhao H, Chen C (2013) Highly sensitive and selective nonenzymatic detection of glucose using three-dimensional porous nickel nanostructures. Anal Chem 85:3561–3569

    CAS  PubMed  Google Scholar 

  22. Bin E, Bu L, Shao Q, Li Y, Huang X (2019) Efficient catalytic hydrogen generation by intermetallic platinum-lead nanostructures with highly tunable porous feature. Science Bulletin 64:36–43

    Google Scholar 

  23. Jing S, Wang D, Yin S, Lu J, Shen PK, Tsiakaras P (2019) P-doped CNTs encapsulated nickel hybrids with flower-like structure as efficient catalysts for hydrogen evolution reaction. Electrochim Acta 298:142–149

    CAS  Google Scholar 

  24. Yang S, Li G, Wang G, Zhao J, Gao X, Qu L (2015) Synthesis of Mn3O4 nanoparticles/nitrogen-doped graphene hybrid composite for nonenzymatic glucose sensor. Sensors Actuators B Chem 221:172–178

    CAS  Google Scholar 

  25. Liu A, Ren Q, Xu T, Yuan M, Tang W (2012) Morphology-controllable gold nanostructures on phosphorus doped diamond-like carbon surfaces and their electrocatalysis for glucose oxidation. Sensors Actuators B Chem 162:135–142

    CAS  Google Scholar 

  26. Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Du Y, Yang P, Jiang S, Song S (2017) N-doped graphene-supported binary PdBi networks for formic acid oxidation. Appl Surf Sci 416:191–199

    CAS  Google Scholar 

  27. Sha T, Liu J, Sun M, Li L, Bai J, Hu Z, Zhou M (2019) Green and low-cost synthesis of nitrogen-doped graphene-like mesoporous nanosheets from the biomass waste of okara for the amperometric detection of vitamin C in real samples. Talanta 200:300–306

    CAS  PubMed  Google Scholar 

  28. Wan K, Tan A-d, Yu Z-p, Liang Z-x, Piao J-h, Tsiakaras P (2017) 2D nitrogen-doped hierarchically porous carbon: key role of low dimensional structure in favoring electrocatalysis and mass transfer for oxygen reduction reaction. Appl Catal B Environ 209:447–454

    CAS  Google Scholar 

  29. He W, Jiang C, Wang J, Lu L (2014) High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons. Angew Chem Int Ed 53:9503–9507

    CAS  Google Scholar 

  30. Liang J-Y, Wang C-C, Lu S-Y (2015) Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. J Mater Chem A 3:24453–24462

    CAS  Google Scholar 

  31. Nsabimana A, Lai J, Li S, Hui P, Liu Z, Xu G (2017) Surfactant-free synthesis of three-dimensional nitrogen-doped hierarchically porous carbon and its application as an electrode modification material for simultaneous sensing of ascorbic acid, dopamine and uric acid. Analyst 142:478–484

    CAS  PubMed  Google Scholar 

  32. Nguyen DM, Bach LG, Bui QB (2019) Hierarchical nanosheets based on zinc-doped nickel hydroxide attached 3D framework as free-standing nonenzymatic sensor for sensitive glucose detection. J Electroanal Chem 837:86–94

    CAS  Google Scholar 

  33. Thanh TD, Balamurugan J, Lee SH, Kim NH, Lee JH (2016) Effective seed-assisted synthesis of gold nanoparticles anchored nitrogen-doped graphene for electrochemical detection of glucose and dopamine. Biosens Bioelectron 81:259–267

    CAS  PubMed  Google Scholar 

  34. Ji Y, Liu J, Liu X, Yuen MMF, Fu X-Z, Yang Y, Sun R, Wong C-P (2017) 3D porous Cu@Cu2O films supported Pd nanoparticles for glucose electrocatalytic oxidation. Electrochim Acta 248:299–306

    CAS  Google Scholar 

  35. Lu Z, Wu L, Zhang J, Dai W, Mo G, Ye J (2019) Bifunctional and highly sensitive electrochemical non-enzymatic glucose and hydrogen peroxide biosensor based on NiCo2O4 nanoflowers decorated 3D nitrogen doped holey graphene hydrogel. Mater Sci Eng C 102:708–717

    CAS  Google Scholar 

  36. Meng A, Yuan X, Li Z, Zhao K, Sheng L, Li Q (2019) Direct growth of 3D porous (Ni-Co)3S4 nanosheets arrays on rGO-PEDOT hybrid film for high performance non-enzymatic glucose sensing. Sensors Actuators B Chem 291:9–16

    CAS  Google Scholar 

  37. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 279:548–552

    CAS  PubMed  Google Scholar 

  38. Miao F, Tao B, Sun L, Liu T, You J, Wang L, Chu PK (2009) Amperometric glucose sensor based on 3D ordered nickel–palladium nanomaterial supported by silicon MCP array. Sensors Actuators B Chem 141:338–342

    CAS  Google Scholar 

  39. Adzic R, Hsiao M, Yeager E (1989) Electrochemical oxidation of glucose on single crystal gold surfaces. J Electroanal Chem Interfacial Electrochem 260:475–485

    CAS  Google Scholar 

  40. Vassilyev YB, Khazova O, Nikolaeva N (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: part II. Effect of the nature of the electrode and the electrooxidation mechanism. J Electroanal Chem Interfacial Electrochem 196:127–144

    Google Scholar 

  41. Becerik I, Kadirgan F (1992) The electrocatalytic properties of palladium electrodes for the oxidation of d-glucose in alkaline medium. Electrochim Acta 37:2651–2657

    CAS  Google Scholar 

  42. Kannan P, Maiyalagan T, Marsili E, Ghosh S, Niedziolka-Jönsson J, Jönsson-Niedziolka M (2016) Hierarchical 3-dimensional nickel–iron nanosheet arrays on carbon fiber paper as a novel electrode for non-enzymatic glucose sensing. Nanoscale 8:843–855

    CAS  PubMed  Google Scholar 

  43. Li Y, Xie M, Zhang X, Liu Q, Lin D, Xu C, Xie F, Sun X (2019) Co-MOF nanosheet array: a high-performance electrochemical sensor for non-enzymatic glucose detection. Sensors Actuators B Chem 278:126–132

    CAS  Google Scholar 

  44. Ahmed AM, Sayed SY, El-Nagar GA, Morsi WM, El-Deab MS, El-Anadouli BE (2019) Enhanced electrocatalytic oxidation of glucose at graphene nanosheets–metal oxides nanoparticles modified GC electrodes. J Electroanal Chem 835:313–323

    CAS  Google Scholar 

  45. Ashok A, Kumar A, Tarlochan F (2019) Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles. Appl Surf Sci 481:712–722

    CAS  Google Scholar 

  46. Eshghi A, kheirmand M (2019) Electroplating of Pt–Ni–Cu nanoparticles on glassy carbon electrode for glucose electro-oxidation process. Surf Eng 35:128–134

    CAS  Google Scholar 

  47. Elkholy AE, Heakal FE-T, El-Said WA (2019) Improving the electrocatalytic performance of Pd nanoparticles supported on indium/tin oxide substrates towards glucose oxidation. Appl Catal A Gen 580:28–33

    CAS  Google Scholar 

  48. Wu J, Suls J, Sansen W (2000) Amperometric determination of ascorbic acid on screen-printing ruthenium dioxide electrode. Electrochem Commun 2:90–93

    CAS  Google Scholar 

  49. Ruiz JJ, Aldaz A, Dominguez M (1977) Mechanism of L ascorbic acid oxidation and dehydro L ascorbic acid reduction on a mercury electrode. I. Acid medium. Can J Chem 55:2799–2806

    CAS  Google Scholar 

  50. Harraz FA, Faisal M, Ismail AA, Al-Sayari SA, Al-Salami AE, Al-Hajry A, Al-Assiri MS (2019) TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J Electroanal Chem 832:225–232

    CAS  Google Scholar 

  51. Xu C, Liu B, Ning W, Wang X (2019) Highly sensitive ascorbic acid sensor based on ionic liquid functionalized graphene oxide nanocomposite. Int J Electrochem Sci 14:1670–1683

    CAS  Google Scholar 

  52. Oko DN, Garbarino S, Zhang J, Xu Z, Chaker M, Ma D, Guay D, Tavares AC (2015) Dopamine and ascorbic acid electro-oxidation on au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochim Acta 159:174–183

    CAS  Google Scholar 

  53. Wang X, Jin B, Lin X (2002) In-situ FTIR spectroelectrochemical study of dopamine at a glassy carbon electrode in a neutral solution. Anal Sci 18:931–933

    CAS  PubMed  Google Scholar 

  54. Yang H, Wang Z, Li C, Xu C (2017) Nanoporous PdCu alloy as an excellent electrochemical sensor for H2O2 and glucose detection. J Colloid Interface Sci 491:321–328

    CAS  PubMed  Google Scholar 

  55. Hsieh Y-S, Hong B-D, Lee C-L (2016) Non-enzymatic sensing of dopamine using a glassy carbon electrode modified with a nanocomposite consisting of palladium nanocubes supported on reduced graphene oxide in a nafion matrix. Microchim Acta 183:905–910

    CAS  Google Scholar 

  56. Wang J, Yang B, Zhong J, Yan B, Zhang K, Zhai C, Shiraishi Y, Du Y, Yang P (2017) Dopamine and uric acid electrochemical sensor based on a glassy carbon electrode modified with cubic Pd and reduced graphene oxide nanocomposite. J Colloid Interface Sci 497:172–180

    CAS  PubMed  Google Scholar 

  57. Li R, Yang T, Li Z, Gu Z, Wang G, Liu J (2017) Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine. Anal Chim Acta 954:43–51

    CAS  PubMed  Google Scholar 

  58. Huang Y, Tan Y, Feng C, Wang S, Wu H, Zhang G (2018) Synthesis of CuO/g-C3N4 composites, and their application to voltammetric sensing of glucose and dopamine. Microchim Acta 186:10

    Google Scholar 

  59. Chen J, Liu C, Huang Y-T, Lee H, Feng S-P (2018) Study of the growth mechanisms of nanoporous Ag flowers for non-enzymatic glucose detection. Nanotechnology 29:505501

    PubMed  Google Scholar 

  60. Nayak P, Nair SP, Ramaprabhu S (2016) Enzyme-less and low-potential sensing of glucose using a glassy carbon electrode modified with palladium nanoparticles deposited on graphene-wrapped carbon nanotubes. Microchim Acta 183:1055–1062

    CAS  Google Scholar 

Download references

Acknowledgments

Dr. Angeliki Brouzgou thankfully acknowledges the post-doc program: «Strengthening Postdoctoral Researchers», co-funded by the Greek State Scholarships Foundation, the «Human Resource Development, Education and Lifelong Learning» with Priority Axes 6,8,9, by the European Commission Social Fund-ECB and the Greek government».

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angeliki Brouzgou or Panagiotis Tsiakaras.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brouzgou, A., Gorbova, E., Wang, Y. et al. Nitrogen-doped 3D hierarchical ordered mesoporous carbon supported palladium electrocatalyst for the simultaneous detection of ascorbic acid, dopamine, and glucose. Ionics 25, 6061–6070 (2019). https://doi.org/10.1007/s11581-019-03116-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03116-z

Keywords

  • 3D hierarchical ordered mesoporous carbon
  • Glucose electrooxidation, ascorbic acid electrooxidation
  • Dopamine electrooxidation