Advertisement

Ionics

pp 1–8 | Cite as

Synthesized Fe-doping Li3V2(PO4)3/C cathode material from combustion synthesis precursors with enhanced electrochemical performance

  • Zhiqin CaoEmail author
  • Chengyang Zuo
  • Xumei Cui
  • Xuefeng Zhang
Original Paper
  • 30 Downloads

Abstract

Fe-doping Li3V2(PO4)3/C material was successfully synthesized from combustion synthesis precursors. The Li3V2(PO4)3 is layered by amorphous carbon with a porous structure and doped with Fe, which can improve the Li+ transfer rate and conductivity. The 1% Fe-doped products used as cathode electrode for lithium-ion batteries exhibit enhanced electrochemical performance. In 3.0~4.8 V, it has a specific discharge capacity of 180 mAh g−1 after 20 cycles at 0.1 C, 142.5 mAh g−1 after 500 cycles at 1 C, and 132.5 mAh g−1 after 500 cycles at 10 C. Moreover, it shows stabilized specific discharge capacity of 65.9 mAh g−1 after 500 cycles at a rate of 20 C, and the capacity retention is 98%. Thus, it could infer the Fe-doping Li3V2(PO4)3/C material is a permission candidated material for application in lithium-ion batteries with high performance.

Keywords

Solution combustion synthesis Li3V2(PO4)3 Cathode Electrochemical performance 

Notes

Funding information

This work was supported by the Applied Basic Research Programs of Sichuan Province (no. 2018JY0130, no. 2019JY0684) and the Applied Basic Research Programs of Panzhihua (no. 2018CY-G-11).

References

  1. 1.
    Sun P, Zhao X, Chen R, Chen T, Ma L, Fan Q, Lu H, Hu Y, Tie Z, Jin Z, Xu Q, Liu J (2016) Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale 8:7408–7415CrossRefGoogle Scholar
  2. 2.
    Chen L, Yan B, Xu J, Wang C, Chao Y, Jiang X, Yang G (2015) Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-ion batteries. ACS Appl Mater Interfaces 7:13934–13943CrossRefGoogle Scholar
  3. 3.
    Mao WF, Fu YB, Zhao H, Ai G, Dai YL, Meng DC, Zhang XL, Qu DY, Liu G, Battaglia VS, Tang ZY (2015) Rational design and facile synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7:12057–12066CrossRefGoogle Scholar
  4. 4.
    Whittingham MS (2014) Ultimate limits to intercalation reactions for lithium batteries. Chem Rev 114:1414–11443Google Scholar
  5. 5.
    Wei Q, Xu Y, Li Q, Tan S, Ren W, An Q, Mai L (2016) Novel layered Li3V2(PO4)3/rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chem Commun 52:8730–8732CrossRefGoogle Scholar
  6. 6.
    Wei Q, An Q, Chen D, Mai L, Chen S, Zhao Y, Hercule KM, Xu L, Minhas-Khan A, Zhang Q (2014) One-pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. Nano Lett 14:1042–1048CrossRefGoogle Scholar
  7. 7.
    Kang J, Mathew V, Gim J, Kim S, Song J, Bin Im W, Han J, Lee JY, Kim J (2014) Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Sci Rep 4:4047CrossRefGoogle Scholar
  8. 8.
    Wang S, Zhang Z, Deb A, Yang C, Yang L, Hirano S (2014) Nanostructured Li3V2(PO4)3/C composite as high-rate and long-life cathode material for lithium ion batteries. Electrochim Acta 143:297–304CrossRefGoogle Scholar
  9. 9.
    Rajagopalan R, Zhang L, Dou SX, Liu H (2016) Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv Energy Mater 6:1501760CrossRefGoogle Scholar
  10. 10.
    Liao Y, Li C, Lou X, Hu X, Ning Y, Yuan F, Chen B, Shen M, Hu B (2018) Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochim Acta 271:608–616CrossRefGoogle Scholar
  11. 11.
    Lin X, Shen Z, Han T, Liu J, Huang J, Zhou P, Zhang H, Liu J, Li J, Li J (2018) Hydrogel assisted synthesis of Li3V2(PO4)3 composite as high energy density and low-temperature stable secondary battery cathode. J Alloy Compd 739:837–847CrossRefGoogle Scholar
  12. 12.
    Tang Y, Rui X, Zhang Y, Lim TM, Dong Z, Hng HH, Chen X, Yan Q, Chen Z (2013) Vanadium pentoxide cathode materials for high-performance lithium-ion batteries enabled by a hierarchical nanoflower structure via an electrochemical process. J Mater Chem A 1:82–88CrossRefGoogle Scholar
  13. 13.
    Naoi K, Kisu K, Iwama E, Sato Y, Shinoda M, Okita N, Naoi W (2015) Ultrafast cathode characteristics of nanocrystalline-Li/carbon nanofiber composites. J Electrochem Soc 162:A827–A833CrossRefGoogle Scholar
  14. 14.
    Kim S, Zhang Z, Wang S, Yang L, Penner-Hahn JE, De A (2018) Electrochemical and structural investigation of Mg-doped Li3V(2-2x/3) Mgx (PO4)3. J Power Sources 396:491–497CrossRefGoogle Scholar
  15. 15.
    Kalaga K, Sayed FN, Rodrigues MF, Babu G, Gullapalli H, Ajayan PM (2018) Doping stabilized Li3V2(PO4)3 cathode for high voltage, temperature enduring Li-ion batteries. J Power Sources 390:100–107CrossRefGoogle Scholar
  16. 16.
    Cheng Y, Feng K, Zhou W, Zhang H, Li X, Zhang H (2015) A Bi-doped Li3V2(PO4)3/C cathode material with an enhanced high-rate capacity and long cycle stability for lithium ion batteries. Dalton Trans 44:17579–17586CrossRefGoogle Scholar
  17. 17.
    Zhang Y, Su Z, Ding J (2017) Synthesis and electrochemical properties of Ge-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J Alloy Compd 702:427–431CrossRefGoogle Scholar
  18. 18.
    Yan J, Fang H, Jia X, Wang L (2018) Copper incorporated in Li3V2(PO4)3/C cathode materials and its effects on high-rate Li-ion batteries. J Alloy Compd 730:103–109CrossRefGoogle Scholar
  19. 19.
    Park J, Kim J, Park WB, Sun Y, Myung S (2017) Effect of Mn Li3V2−xMnx (PO4)3 as high capacity cathodes for lithium batteries. ACS Appl Mater Interfaces 9:40307−40316Google Scholar
  20. 20.
    Liu X, Zhao Y, Kuang Q, Li X, Dong Y, Jing Z, Hou S (2016) Mixing transition-metal phosphates Li3V2-xFex (PO4)3 (0≤x≤2): the synthesis, structure and electrochemical properties. Electrochim Acta 196:517–526CrossRefGoogle Scholar
  21. 21.
    Varma A, Mukasyan AS, Rogachev AS, Manukyan KV (2016) Solution combustion synthesis of nanoscale materials. Chem Rev 116:14493–14586CrossRefGoogle Scholar
  22. 22.
    Manukyan KV, Chen YS, Rouvimov S, Li P, Li X, Dong S, Liu X, Furdyna JK, Orlov A, Bernstein GH, Porod W, Roslyakov S, Mukasyan AS (2014) Ultrasmall α-Fe2O3 superparamagnetic nanoparticles with high magnetization prepared by template-assisted combustion process. J Phys Chem C 118:16264CrossRefGoogle Scholar
  23. 23.
    Cao Z, Qin M, Zuo C, Gu Y, Jia B (2017) Facile route for synthesis of mesoporous graphite encapsulated iron carbide/iron nanosheet composites and their electrocatalytic activity. J Colloid Interface Sci 491:55–63CrossRefGoogle Scholar
  24. 24.
    Cui K, Hu S, Li Y (2016) Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochim Acta 210:45–52CrossRefGoogle Scholar
  25. 25.
    Zhang LL, Liang G, Peng G, Jiang Y, Fang H, Huang YH, Croft MC, Ignatov A (2013) Evolution of electrochemical performance in Li3V2(PO4)3/C composites caused by cation incorporation. Electrochim Acta 108:182–190CrossRefGoogle Scholar
  26. 26.
    Li Q, Wen Z, Fan C, Zeng T, Han S (2018) Chemical reaction characteristics, structural transformation and electrochemical performances of new cathode LiVPO4F/C synthesized by a novel one-step method for lithium ion batteries. RSC Adv 8:7044–7054CrossRefGoogle Scholar
  27. 27.
    Wang C, Guo Z, Shen W, Zhang A, Xu Q, Liu H, Wang Y (2015) Application of sulfur-doped carbon coating on the surface of Li3V2(PO4)3 composites to facilitate Li-ion storage as cathode materials. J Mater Chem A 3:6064–6072CrossRefGoogle Scholar
  28. 28.
    Wang C, Shen W, Liu H (2014) Nitrogen-doped carbon coated Li3V2(PO4)3 derived from a facile in situ fabrication strategy with ultrahigh-rate stable performance for lithium-ion storage. New J Chem 38:430–436CrossRefGoogle Scholar
  29. 29.
    Si Y, Su Z, Wang Y, Ma T, Ding J (2015) Improved electrochemical properties of (1- x)LiFePO4$x Li3V2(PO4)3/C composites prepared by a novel sol-gel method. New J Chem 39:8971–8977CrossRefGoogle Scholar
  30. 30.
    Morgan D, Ceder G, Saidi MY, Swoyer J, Huang H, Adamson G (2002) Experimental and computational study of the structure and electrochemical properties of LixM2(PO4)3 compounds with the monoclinic and rhombohedral structure. Chem Mater 14:4684–4693CrossRefGoogle Scholar
  31. 31.
    Yue Y, Liang H (2017) Micro- and nano-structured vanadium pentoxide (V2O5) for electrodes of lithium-ion batteries. Adv Energy Mater 7:1602545CrossRefGoogle Scholar
  32. 32.
    Cao Z, Qin M, Jia B, Gu Y, Chen P, Volinsky AA, Qu X (2015) One pot solution combustion synthesis of highly mesoporous hematite for photocatalysis. Ceram Int 41:2806–2812CrossRefGoogle Scholar
  33. 33.
    Deshpande K, Mukasyan A, Varma A (2004) Direct synthesis of iron oxide nanopowders by combustion approach: reaction mechanism and properties. Chem Mater 16:4896–4904CrossRefGoogle Scholar
  34. 34.
    Cao Z, Qin M, Jia B, Zhang L, Wan Q, Wang M, Volinsky AA, Qu X (2014) Facile route for synthesis of mesoporous Cr2O3 sheet as anode materials for Li-ion batteries. Electrochim Acta 139:76–81CrossRefGoogle Scholar
  35. 35.
    Patoux S, Wurm C, Morcretta M, Rousse G, Masquelier C (2003) A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J Power Sources 119–121:278–284CrossRefGoogle Scholar
  36. 36.
    Zhang LL, Sun HB, Yang XL, Li M, Li Z, Ni SB, Tao HC (2016) Natural graphite enhanced the electrochemical performance of Li3V2(PO4)3 cathode material for lithium ion batteries. J Solid State Electrochem 20:311–318CrossRefGoogle Scholar
  37. 37.
    Zhang L, Li Z, Yang X, Ding X, Zhou Y, Sun H, Tao H, Xiong L, Huang Y (2017) Binder-free Li3V2(PO4)3/C membrane electrode supported on 3D nitrogen doped carbon fibers for high-performance lithium-ion batteries. Nano Energy 34:111–119CrossRefGoogle Scholar
  38. 38.
    Wu J, Xu M, Tang C, Li G, He H, Li CM (2018) F-doping effects on carbon-coated Li3V2(PO4)3 as a cathode for high performance lithium rechargeable batteries: combined experimental and DFT studies. Phys Chem Chem Phys 20:15192–15202CrossRefGoogle Scholar
  39. 39.
    Kim S, Zhang ZX, Wang SL, Yang L, Cairns EJ, Penner-Hahn JE, Deb A (2016) Electrochemical and structural investigation of the mechanism of irreversibility in Li3V2(PO4)3 cathodes. J Phys Chem C 120:7005–7012CrossRefGoogle Scholar
  40. 40.
    Sun HB, Zhang LL, Yang XL, Huang YH, Li Z, Zhou YX, Ding XK, Liang G (2016) Effect of Fe-doping followed by C+SiO2 hybrid layer coating on Li3V2(PO4)3 cathode material for lithium-ion batteries. Ceram Int 42:16557–16562CrossRefGoogle Scholar
  41. 41.
    Saidi MY, Barker J, Huang H, Swoyer JL, Adamson G (2003) Performance characteristics of lithium vanadium phosphate as a cathode material for lithium-ion batteries. J Power Sources 119:266–272CrossRefGoogle Scholar
  42. 42.
    Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3. J Am Chem Soc 125:10402–10411CrossRefGoogle Scholar
  43. 43.
    Ren MM, Zhou Z, Li YZ, Gao XP, Yan J (2006) Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J Power Sources 162:1357–1362CrossRefGoogle Scholar
  44. 44.
    Li Z, Zhang LL, Yang XL, Sun HB, Huang YH, Liang G (2016) Superior rate performance of Li3V2(PO4)3 co-modified by Fe-doping and RGO-incorporation. RSC Adv 6:10334–10340CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhiqin Cao
    • 1
    Email author
  • Chengyang Zuo
    • 1
  • Xumei Cui
    • 1
  • Xuefeng Zhang
    • 1
  1. 1.College of Vanadium and TitaniumPanzhihua UniversityPanzhihuaChina

Personalised recommendations