Skip to main content

Effects of Tween 80 dispersant on LiFePO4/C cathode material prepared by sonochemical high-temperature ball milling method

Abstract

Li-ion batteries have drawn increasing attention because of attractive characteristics such as high operating voltage, high particle density, long cycle life, low self-discharge, and not showing a memory effect. LiFePO4/C cathode material was prepared via a sonochemical high-temperature ball milling method using Tween 80 dispersant. The effects of the Tween 80 on the electrochemical properties of LiFePO4/C were investigated. The experimental results showed that the Tween 80 improved the surface area of LiFePO4/C, and the prepared cathode material showed a better electrochemical performance: it delivered discharge capacities of 159.0 mAh g−1 at 0.1 C and 110.4 mAh g−1 at 10 C, which were higher than for Tween 80-free samples. Moreover, the discharge capacity was 119.6 mAh g−1 at a rate of 5.0 C over 100 cycles while the capacity retention was 94.2%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Pasquier A, Plitz I, Menocal S, Amatucci G (2003) A comparative study of Li-ion battery, super capacitor and non-aqueous asymmetric hybrid devices for automotive applications. J Power Sources 115:171–178

    Google Scholar 

  2. 2.

    Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    CAS  Google Scholar 

  3. 3.

    Kim HS, Cho BW, Cho W (2004) Cycling performance of LiFePO4 cathode material for lithium secondary batteries. J Power Sources 132:235–239

    CAS  Google Scholar 

  4. 4.

    Zhi X, Liang G, Wang L (2009) The cycling performance of LiFePO4/C cathode materials. J Power Sources 189:779–782

    CAS  Google Scholar 

  5. 5.

    Takahashi M, Tobishima S, Takei K, Sakurai Y (2002) Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries. Solid State Ionics 148:283–289

    CAS  Google Scholar 

  6. 6.

    Bao L, Li LL, Xu G, Wang JW, Zhao RY, Shen G, Han GR, Zhou SX (2016) Olivine LiFePO4 nanocrystallites embedded in carbon-coating matrix for high power Li-ion batteries. Electrochim Acta 222:685–692

    CAS  Google Scholar 

  7. 7.

    Xun D, Wang PF, Shen BW (2016) Synthesis and characterization of sulfur-doped carbon decorated LiFePO4 nanocomposite as high performance cathode material for lithium-ion batteries. Ceram Int l42:5331–5338

    Google Scholar 

  8. 8.

    Liu HC, Wang YM, Hsieh CC (2017) Optimized synthesis of Cu-doped LiFePO4/C cathode material by an ethylene glycol assisted co-precipitation method. Ceram Int 43:3196–3201

    CAS  Google Scholar 

  9. 9.

    Wang YM, Giuli G, Moretti A, Nobili F, Fehr KT, Paris E, Marassi (2015) R synthesis and characterization of Zn-doped LiFePO4 cathode materials for Li-ion battery. Mater Chem Phys 155:191–204

    Google Scholar 

  10. 10.

    Liao XZ, He YS, Ma ZF, Zhang XM, Wang L (2007) Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. J Power Sources 174:720–725

    CAS  Google Scholar 

  11. 11.

    Madhav S, Bhawana S, Monika WP (2017) Reaction mechanism and morphology of the LiFePO4 materials synthesized by chemical solution deposition and solid-state reaction. J Electroanal Chem 790:11–19

    Google Scholar 

  12. 12.

    Smecellato PC, Davoglio RA, Biaggio SR, Bocchi N, Rocha-Filho RC (2017) Alternative route for LiFePO4 synthesis: carbothermal reduction combined with microwave-assisted solid-state reaction. Mater Res Bull 86:209–214

    CAS  Google Scholar 

  13. 13.

    Liu H, Zhang HP, Fu LJ, Wu YP, Wu HQ (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159:717–720

    CAS  Google Scholar 

  14. 14.

    Zhu YM, Tang SZ, Shi HH, Hu HL (2014) Synthesis of FePO4·xH2O for fabricating submicrometer structured LiFePO4/C by a co-precipitation method. Ceram Int 40:2685–2690

    CAS  Google Scholar 

  15. 15.

    Wang Y, Sun B, Park J, Kim WS, Kim HS, Wang G (2011) Morphology control and electrochemical properties of nanosize LiFePO4 cathode material synthesized by co-precipitation combined with in situ polymerization. J Alloys Compd 509:1040–1044

    CAS  Google Scholar 

  16. 16.

    Xie G, Zhu HJ, Liu XM, Yang H (2013) A core-shell LiFePO4/C nanocomposite prepared via a sol-gel method assisted by citric acid. J Alloys Compd 574:155–160

    CAS  Google Scholar 

  17. 17.

    Gao MY, Liu NQ, Li ZB, Wang WK, Li CM, Zhang H, Chen YL, Yu ZB, Huang YQ (2014) A gelatin-based sol-gel procedure to synthesize the LiFePO4/C nanocomposite for lithium ion batteries. Solid State Ionics 258:8–12

    CAS  Google Scholar 

  18. 18.

    Zhang Q, Jiang WW, Zhou ZF, Wang SM, Guo XS, Zhao S, Ma G (2012) Enhanced electrochemical performance of Li4SiO4-coated LiFePO4 prepared by sol-gel method and microwave heating. Solid State Ionics 218:31–34

    CAS  Google Scholar 

  19. 19.

    Ehsan G, Mehran J, Hossein GZ, Hossein B, Mehdi G (2018) Tartaric acid assisted carbonization of LiFePO4 synthesized through in situ hydrothermal process in aqueous glycerol solution. Electrochim Acta 259:903–915

    Google Scholar 

  20. 20.

    Wu G, Liu N, Gao XG, Tian XH, Zhu YB, Zhou YK, Zhu QY (2018) A hydrothermally synthesized LiFePO4/C composite with superior low-temperature performance and cycle life. Appl Surf Sci 435:1329–1336

    CAS  Google Scholar 

  21. 21.

    Bolloju S, Rohan R, Wu ST, Yen HX, Dwivedi GD, Lin YA, Lee JT (2016) A green and facile approach for hydrothermal synthesis of LiFePO4 using iron metal directly. Electrochim Acta 220:164–168

    CAS  Google Scholar 

  22. 22.

    Zhao CS, Wang LN, Wu H, Chen JT, Gao M (2018) Ultrafast fabrication of LiFePO4 with high capacity and superior rate cycling performance for lithium ion batteries. Mater Res Bull 97:195–200

    Google Scholar 

  23. 23.

    Li XT, Shao ZB, Liu KR, Zhao Q, Liu GF, Xu BS (2017) Influence of Li:Fe molar ratio on the performance of the LiFePO4/C prepared by high temperature ball milling method. J Electroanal Chem 801:368–372

    CAS  Google Scholar 

  24. 24.

    Li XT, Shao ZB, Liu KR, Zhao Q, Liu GF, Xu BS (2017) Influence of synthesis method on the performance of the LiFePO4/C cathode material. Colloids Surf A Physicochem Eng Asp 529:850–855

    CAS  Google Scholar 

  25. 25.

    Zhao Q, Shao ZB, Liu CJ, Jiang MF, Li XT, Zevenhoven R, Henrik S (2014) Preparation of Cu-Cr alloy powder by mechanical alloying. J Alloys Compd 607:118–124

    CAS  Google Scholar 

  26. 26.

    Jia LY, Shao ZB, Lv Q, Tian YW, Han JF (2014) Preparation of red-emitting phosphor (Y, Gd) BO3: EU3+ by high temperature ball milling. Ceram Int 40:739–743

    CAS  Google Scholar 

  27. 27.

    Li XT, Shao ZB, Liu KR, Zhao Q, Liu GF, Xu BS (2018) Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel. J Electroanal Chem 818:204–209

    CAS  Google Scholar 

  28. 28.

    Sivakumar P, Nayak PK, Markovsky B, Aurbach D, Gedanken A (2015) A Sonochemical synthesis of LiNi0.5Mn1.5O4 and its electrochemical performance as a cathode material for 5 V Li-ion batteries. Ultrason Sonochem 26:332–339

    PubMed  CAS  Google Scholar 

  29. 29.

    Malka E, Perelshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A (2013) A eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 9:4069–4076

    PubMed  CAS  Google Scholar 

  30. 30.

    Gaberscek M, Dominko R, Jamnik J (2007) Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem Commun 9:2778–2783

    CAS  Google Scholar 

  31. 31.

    Kuwahara A, Suzuki S, Miyayama M (2010) Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties. J Electroceram 24:69–75

    CAS  Google Scholar 

  32. 32.

    Feng JP, Wang YL (2016) High-rate and ultralong cycle-life LiFePO4 nanocrystals coated by boron-doped carbon as positive electrode for lithium-ion batteries. Appl Surf Sci 390:481–488

    CAS  Google Scholar 

  33. 33.

    Malik R, Burch D, Bazant M, Ceder G (2010) Particle size dependence of the ionic diffusivity. Nano Lett 10:4123–4127

    PubMed  CAS  Google Scholar 

  34. 34.

    Mangang M, Seifert HJ, Pflegingab W (2016) Influence of laser pulse duration on the electrochemical performance of laser structured LiFePO4 composite electrodes. J Power Sources 304:24–32

    CAS  Google Scholar 

  35. 35.

    Yen H, Rohan R, Chiou CY, Hsieh CJ, Bolloju S, Li CC, Yang YF, Ong CW, Lee JT (2017) Hierarchy concomitant in situ stable iron(II)-carbon source manipulation using ferrocenecarboxylic acid for hydrothermal synthesis of LiFePO4 as high-capacity battery cathode. Electrochim Acta 253:227–238

    CAS  Google Scholar 

  36. 36.

    Burba CM, Frech R (2004) Raman and FTIR spectroscopic study of LixFePO4(0<x<1). J Electrochem Soc 151:A1032–A1038

    CAS  Google Scholar 

  37. 37.

    Sivakumar M, Muruganantham R, Subadevi R (2015) Synthesis of surface modified LiFePO4 cathode material via polyoltechnique for high rate lithium secondary battery. Appl Surf Sci 337:234–240

    Google Scholar 

  38. 38.

    Xue Y, Wang ZB, Yu FD, Zhang Y, Yin GP (2014) Ethanol-assisted hydrothermal synthesis of LiNi0.5Mn1.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191

    CAS  Google Scholar 

  39. 39.

    Ma ZP, Shao GJ, Wang GL, Zhang Y, Du JP (2014) Effects of Nb-doped on the structure and electrochemical performance of LiFePO4/C composites. J Solid State Chem 210:232–237

    CAS  Google Scholar 

  40. 40.

    Ouvrard G, Zerrouki M, Soudan P, Lestriez B, Masquelier C, Morcrette M, Hamelet S, Belin S, Flank AM, Baudelet F (2013) Heterogeneous behaviour of the lithium battery composite electrode LiFePO4. J Power Sources 229:16–21

    CAS  Google Scholar 

  41. 41.

    Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) Study of LiFePO4 by cyclic voltammetry. J Electrochem Soc 154:A253–A257

    CAS  Google Scholar 

  42. 42.

    Li J, Qu QT, Zhang LF, Zhang L, Zheng HH (2013) A monodispersed nano-hexahedral LiFePO4 with improved power capability by carbon-coatings. J Alloys Compd 579:377–383

    CAS  Google Scholar 

  43. 43.

    Qin X, Wang XH, Xiang HM, Xie J, Li JJ, Zhou YC (2010) Mechanism for hydrothermal synthesis of LiFePO4 platelets as cathode material for lithium-ion batteries. J Phys Chem C 114:16806–16812

    CAS  Google Scholar 

  44. 44.

    Wang HQ, Lai FY, Li Y, Zhang XH, Huang YG, Hu SJ, Li QY (2015) Excellent stability of spinel LiMn2O4-based cathode materials for lithium-ion batteries. Electrochim Acta 177:290–297

    CAS  Google Scholar 

  45. 45.

    Fathollahi F, Javanbakht M, Omidvar H, Ghaemi M (2015) LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance. J Alloys Compd 643:40–48

    CAS  Google Scholar 

  46. 46.

    Han B, Meng XD, Ma L, Nan JY (2016) Nitrogen-doped carbon decorated LiFePO4 composite synthesized via a microwave heating route using polydopamine as carbon-nitrogen precursor. Ceram Int 42:2789–2797

    CAS  Google Scholar 

  47. 47.

    Yang JL, Wang JJ, Tang YJ, Wang DN, Li XF, Hu YH, Li RY, Liang GX, Sham TK, Sun XL (2013) LiFePO4-graphene as a superior cathode material for rechargeable lithium batteries: impact of stacked graphene and unfolded grapheme. Energy Environ Sci 6:1521–1528

    CAS  Google Scholar 

  48. 48.

    Zhao CS, Wang LN, Chen JT, Gao M (2017) Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries. Electrochim Acta 255:266–273

    CAS  Google Scholar 

  49. 49.

    Tian Z, Zhou ZF, Liu SS, Ye F, Yao SJ (2015) Enhanced properties of olivine LiFePO4/graphene co-doped with Nb5+ and Ti4+ by a sol-gel method. Solid State Ionics 278:186–191

    CAS  Google Scholar 

  50. 50.

    Wang ZH, Yuan LX, Wu M, Sun D, Huang YH (2011) Effects of Na+ and cl co-doping on electrochemical performance in LiFePO4/C. Electrochim Acta 56:8477–8483

    CAS  Google Scholar 

  51. 51.

    Xiong J, Xiong S, Guo Z, Yang M, Chen J, Fan H (2012) Ultrasonic dispersion of nano TiC powders aided by tween 80 addition. Ceram Int 38:1815–1821

    CAS  Google Scholar 

Download references

Funding

This work is financially supported by the National Natural Science Foundation of China (No. 51704068), the National Key R&D Program of China (No. 2017YFC0805100), and the Fundamental Research Funds for the Central Universities (No. N172504020).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qing Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Li, X., Shao, Z. et al. Effects of Tween 80 dispersant on LiFePO4/C cathode material prepared by sonochemical high-temperature ball milling method. Ionics 25, 5565–5573 (2019). https://doi.org/10.1007/s11581-019-03078-2

Download citation

Keywords

  • LiFePO4
  • Cathode material
  • Tween 80
  • Sonochemical
  • High-temperature ball milling