Skip to main content
Log in

Experimental, theoretical, and surface study for corrosion inhibition of mild steel in 1 M HCl by using synthetic anti-biotic derivatives

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Isoniazid (anti-biotic) derivatives—PA1 {(E)-N′-(4′-Hydroxy-3-methoxybenzylidene) isonicotino hydrazide}, PA2 {(E)-N′-(Pyridin-4′-ylmethylene) isonicotino hydrazide}, and PA3 {(E)-N′-(Pyridin-3′-ylmethylene) isonicotino hydrazide} were synthesized, characterized, and further examined for corrosion protection activities on mild steel (MS) in 1 M HCl via experimental, theoretical, and surface analysis. Electrochemical processes in the presence of different concentration of tested compounds were characterized as charge transfer controlled and revealed stable, spontaneous corrosion inhibition by inhibitors on mild steel in acidic media. The values evaluated for free energy change (\( \varDelta {G}_{\mathrm{ads}}^0 \)) assured the involvement of chemisorption process. Adsorption data was found well fitted in Langmuir isotherm. Enthalpy and entropy parameters obtained by computational analysis using ADF-band revealed parallel alignment of PA1 on the surface of mild steel as best alignment for optimal adsorption. Theoretically, computed adsorption-free energy (\( \varDelta {G}_{\mathrm{ads}}^0 \)) and adsorption constant (Kads) values for parallel alignment complemented the experimentally determined values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-Fartusie FS, Mohssan SN (2017) Essential trace elements and their vital roles in human body. Indian J Adv Chem Sci 5:127–136. https://doi.org/10.22607/IJACS.2017.503003

    Article  CAS  Google Scholar 

  2. Callister WD Jr (2007) Materials science and engineering: an introduction, 7th edn. John Wiley and Sons, New York

    Google Scholar 

  3. Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J International measures of prevention , application , and economics of corrosion technologies study, http://impact.nace.org/documents/Nace-International-Report

  4. Finšgar M, Jackson J (2014) Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: a review. Corros Sci 86:17–41. https://doi.org/10.1016/j.corsci.2014.04.044

    Article  CAS  Google Scholar 

  5. Saranya J, Sowmiyac M, Sounthari P, Parameswari K, Chitra S, Senthil Kumar K (2016) N-heterocycles as corrosion inhibitors for mild steel in acid medium. J Mol Liq 216:42–52. https://doi.org/10.1016/j.molliq.2015.12.096

    Article  CAS  Google Scholar 

  6. Zheng X, Gong M, Li Q, Guo L (2018) Corrosion inhibition of mild steel in sulfuric acid solution by loquat (Eriobotrya japonica Lindl.) leaves extract. Sci Rep 8:9140. https://doi.org/10.1038/s41598-018-27257-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tansug G, Tuken T, Kıcır N, Erbil M (2014) Investigation of 2-aminoethanethiol as corrosion inhibitor for steel using response surface methodology (RSM). Ionics 20:287–294. https://doi.org/10.1007/s11581-013-0966-2

    Article  CAS  Google Scholar 

  8. Yıldız R (2019) Adsorption and inhibition effect of 2, 4-diamino-6-hydroxypyrimidine for mild steel corrosion in HCl medium: experimental and theoretical investigation. Ionics 25:859–870. https://doi.org/10.1007/s11581-018-2649-5

    Article  CAS  Google Scholar 

  9. Baig N, Chauhan DS, Saleh TA, Quraishi MA (2019) Diethylenetriamine functionalized graphene oxide as a novel corrosion inhibitor for mild steel in hydrochloric acid solutions. New J Chem 43:2328–2337. https://doi.org/10.1039/C8NJ04771E

    Article  CAS  Google Scholar 

  10. Rbaa M, Galai M, Benhiba F, Obot IB, Oudda H, Touhami ME, Lakhrissi B, Zarrouk A (2018) Synthesis and investigation of quinazoline derivatives based on 8-hydroxyquinoline as corrosion inhibitors for mild steel in acidic environment: experimental and theoretical studies. Ionics. https://doi.org/10.1007/s11581-018-2817-7

    Article  Google Scholar 

  11. Abdallah M, El-Etre AY, Soliman MG, Mabrouk EM (2006) Some organic and inorganic compounds as inhibitors for carbon steel corrosion in 3.5 percent NaCl solution. Anti-Corrosion Methods Mater 53:118–123. https://doi.org/10.1108/00035590610650820

    Article  CAS  Google Scholar 

  12. Singh AK, Thakur S, Pani B, Singh G (2018) Green synthesis and corrosion inhibition study of 2-amino-: N ′-((thiophen-2-yl)methylene)benzohydrazide. New J Chem 42:2113–2124. https://doi.org/10.1039/c7nj04162d

    Article  CAS  Google Scholar 

  13. Geethamani P, Kasthuri PK (2015) Adsorption and corrosion inhibition of mild steel in acidic media by expired pharmaceutical drug. Cogent Chem 1:1–11. https://doi.org/10.1080/23312009.2015.1091558

    Article  CAS  Google Scholar 

  14. Deng Q, Shi HW, Ding NN, Chen BQ, He XP, Liu G, Tang Y, Long YT, Chen GR (2012) Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl. Corros Sci 57:220–227. https://doi.org/10.1016/j.corsci.2011.12.014

    Article  CAS  Google Scholar 

  15. Palou RM, Olivares-xomelt O, Likhanova NV (2014) Environmentally friendly corrosion inhibitors. In: Aliofkhazraei M (ed) Developments in corrosion protection. IntechOpen Ltd, London, p 431466

    Google Scholar 

  16. Abd El-Lateef HM (2015) Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions. Corros Sci 92:104–117. https://doi.org/10.1016/j.corsci.2014.11.040

    Article  CAS  Google Scholar 

  17. Verma C, Quraishi MA, Ebenso EE (2013) Electrochemical studies of 2-amino-1, 9-dihydro-9-((2- hydroxyethoxy) methyl)-6h-purin-6-one as green corrosion inhibitor for mild steel in 1.0 m hydrochloric acid solution. Int J Electrochem Sci 8:7401–7413

    CAS  Google Scholar 

  18. Singh AK, Singh P (2015) Adsorption behaviour of o-hydroxy acetophenone benzoyl hydrazone on mild steel/hydrochloric acid interface. J Ind Eng Chem 21:552–560. https://doi.org/10.1016/j.jiec.2014.03.018

    Article  CAS  Google Scholar 

  19. Singh AK, Quraishi MA, Ebenso EE (2011) Inhibitive effect of cefuroxime on the corrosion of mild steel in hydrochloric acid solution. Int J Electrochem Sci 6:5676–5688

    CAS  Google Scholar 

  20. Aramaki K, Node Y, Nishihara H (1990) Adsorption and corrosion inhibition effect of polar organic compounds on iron in 1M HCI04 containing SH- J Electrochem Soc 137:1354–8. https://doi.org/10.1149/1.2086673

    Article  CAS  Google Scholar 

  21. Dibetsoe M, Olasunkanmi LO, Fayemi OE, Yesudass S, Ramaganthan B, Bahadur I, Adekunle A, Kabanda M, Ebenso E (2015) Some phthalocyanine and naphthalocyanine derivatives as corrosion inhibitors for aluminium in acidic medium: experimental, quantum chemical calculations, QSAR studies and synergistic effect of iodide ions. Molecules 20:15701–15734. https://doi.org/10.3390/molecules200915701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Al-Amiery AA, Kadhum AAH, Mohamad AB, Junaedi S (2013) A novel hydrazinecarbothioamide as a potential corrosion inhibitor for mild steel in HCL. Materials (Basel) 6:1420–1431. https://doi.org/10.3390/ma6041420

    Article  CAS  Google Scholar 

  23. Singh AK, Thakur S, Pani B, Ebenso EE, Quraishi MA, Pandey AK (2018) 2-Hydroxy- N ′-((Thiophene-2-yl)methylene)benzohydrazide: ultrasound-assisted synthesis and corrosion inhibition study. ACS Omega 3:4695–4705. https://doi.org/10.1021/acsomega.8b00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chigondo M, Chigondo F (2016) Recent natural corrosion inhibitors for mild steel: an overview. J Chem 2016:1–7. https://doi.org/10.1155/2016/6208937

    Article  CAS  Google Scholar 

  25. Singh AK, Khan S, Singh A, Quraishi SM, Quraishi MA, Ebenso EE (2013) Inhibitive effect of chloroquine towards corrosion of mild steel in hydrochloric acid solution. Res Chem Intermed 39:1191–1208. https://doi.org/10.1007/s11164-012-0677-8

    Article  CAS  Google Scholar 

  26. Bedair MA, Fouda AS, Ismail MA, Mostafa A (2018) Inhibitive effect of bithiophene carbonitrile derivatives on carbon steel corrosion in 1 M HCl solution: experimental and theoretical approaches. Ionics. https://doi.org/10.1007/s11581-018-2811-0

    Article  Google Scholar 

  27. Ju H, Kai ZP, Li Y (2008) Aminic nitrogen-bearing polydentate Schiff base compounds as corrosion inhibitors for iron in acidic media: a quantum chemical calculation. Corros Sci 50:865–871. https://doi.org/10.1016/j.corsci.2007.10.009

    Article  CAS  Google Scholar 

  28. Singh AK, Thakur S, Pani B, Chugh B, Lgaz H, Chung IM, Chaubey P, Pandey AK, Singh J (2019) Solvent-free microwave assisted synthesis and corrosion inhibition study of a series of hydrazones derived from thiophene derivatives: experimental, surface and theoretical study. J Mol Liq 283:788–803. https://doi.org/10.1016/j.molliq.2019.03.126

    Article  CAS  Google Scholar 

  29. Soltani N, Salavati H, Rasouli N, Paziresh M, Moghadasi A (2016) Adsorption and corrosion inhibition effect of Schiff base ligands on low carbon steel corrosion in hydrochloric acid solution. Chem Eng Commun 203:840–854. https://doi.org/10.1080/00986445.2015.1076801

    Article  CAS  Google Scholar 

  30. Nasr-Esfahani M, Zendehdel M, Jafari B (2015) Electrochemical and X-ray structural study of corrosion inhibition and adsorption behavior for mild steel by a new Schiff-base cobalt complex in HCl. Prot Met Phys Chem Surfaces 51:285–294. https://doi.org/10.1134/S2070205115020136

    Article  CAS  Google Scholar 

  31. Gupta NK, Quraishi MA, Verma C, Mukherjee AK (2016) Green Schiff’s bases as corrosion inhibitors for mild steel in 1 M HCl solution: experimental and theoretical approach. RSC Adv 6:102076–102087. https://doi.org/10.1039/c6ra22116e

    Article  CAS  Google Scholar 

  32. Singh AK, Quraishi MA (2010) Investigation of adsorption of isoniazid derivatives at mild steel/hydrochloric acid interface: electrochemical and weight loss methods. Mater Chem Phys 123:666–677. https://doi.org/10.1016/j.matchemphys.2010.05.035

    Article  CAS  Google Scholar 

  33. Singh AK, Shukla SK, Quraishi MA, Ebenso EE (2012) Investigation of adsorption characteristics of N,N′-[(methylimino)dimethylidyne]di-2,4-xylidine as corrosion inhibitor at mild steel/sulphuric acid interface. J Taiwan Inst Chem Eng 43:463–472. https://doi.org/10.1016/j.jtice.2011.10.012

    Article  CAS  Google Scholar 

  34. Franchini M, Philipsen PHT, Visscher L (2013) The becke fuzzy cells integration scheme in the Amsterdam density functional program suite. J Comput Chem 34:1819–1827. https://doi.org/10.1002/jcc.23323

    Article  CAS  PubMed  Google Scholar 

  35. Te Velde G, Baerends EJ (1991) Precise density-functional method for periodic structures. Phys Rev B 44:7888–7903. https://doi.org/10.1103/PhysRevB.44.7888

    Article  Google Scholar 

  36. Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100 1993;98:5648–52. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  37. Perdew JP (1986) DFT approximations for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824. https://doi.org/10.1103/PhysRevB.33.8822

    Article  CAS  Google Scholar 

  38. Van Lenthe E, Baerends EJ, Snijders JG (1994) Relativistic total energy using regular approximations. J Chem Phys 101:9783–9792. https://doi.org/10.1063/1.467943

    Article  Google Scholar 

  39. Channar PA, Shah SJ, Hassan S, Nisa ZU, Lecka J, Sevigny J, Bajorath J, Saeed A, Iqbal J (2017) Isonicotinohydrazones as inhibitors of alkaline phosphatase and ecto-5′-nucleotidase. Chem Biol Drug Des 89:365–370. https://doi.org/10.1111/cbdd.12861

    Article  CAS  PubMed  Google Scholar 

  40. Myung NV, Park DY, Yoo BY, Sumodjo PTA (2003) Development of electroplated magnetic materials for MEMS. J Magn Magn Mater 265:189–198. https://doi.org/10.1016/S0304-8853(03)00264-6

    Article  CAS  Google Scholar 

  41. Arshad N, Akram AR, Akram M, Rasheed I (2017) Triazolothiadiazine derivatives as corrosion inhibitors for copper, mild steel and aluminum surfaces: electrochemical and quantum investigations. Prot Met Phys Chem Surfaces 53:343–358. https://doi.org/10.1134/S2070205117020046

    Article  CAS  Google Scholar 

  42. Altaf F, Qureshi R, Ahmed S (2011) Surface protection of copper by azoles in borate buffers-voltammetric and impedance analysis. J Electroanal Chem 659:134–142. https://doi.org/10.1016/j.jelechem.2011.05.013

    Article  CAS  Google Scholar 

  43. Sherine HB, Rajendran S (2011) Corrosion inhibition of carbon steel in ground water by thiophenol-Zn2+system. Arab J Sci Eng 36:517–528. https://doi.org/10.1007/s13369-011-0067-3

    Article  CAS  Google Scholar 

  44. Saji VS (2010) A review on recent patents in corrosion inhibitors. Recent Patents Corros Sci 2:6–12. https://doi.org/10.2174/1877610801002010006

    Article  CAS  Google Scholar 

  45. Amin MT, Alazba AA, Shafiq M (2015) Adsorptive removal of reactive black 5 from wastewater using bentonite clay: isotherms, kinetics and thermodynamics. Sustain 7:15302–15318. https://doi.org/10.3390/su71115302

    Article  CAS  Google Scholar 

  46. Oguzie EE (2007) Corrosion inhibition of aluminium in acidic and alkaline media by Sansevieria trifasciata extract. Corros Sci 49:1527–1539. https://doi.org/10.1016/j.corsci.2006.08.009

    Article  CAS  Google Scholar 

  47. Martinez S, Stern I (2002) Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel / mimosa tannin / sulfuric acid system. Appl Surf Sci 199:83–89

    Article  CAS  Google Scholar 

  48. Abd El-Maksoud SA, Fouda AS (2005) Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium. Mater Chem Phys 93:84–90. https://doi.org/10.1016/j.matchemphys.2005.02.020

    Article  CAS  Google Scholar 

  49. Shukla SK, Quraishi MA (2009) 4-substituted anilinomethylpropionate: new and efficient corrosion inhibitors for mild steel in hydrochloric acid solution. Corros Sci 51:1990–1997. https://doi.org/10.1016/j.corsci.2009.05.020

    Article  CAS  Google Scholar 

  50. Tiginyanu I, Topala P, Ursaki V (2016) Nanostructures and thin films for multifunctional applications. Springer, Chisinau

    Book  Google Scholar 

  51. Rbaa M, Galai M, El-Faydy M, El-Kacimi Y, Touhami ME (2017) Synthesis and characterization of new benzimidazoles derivatives of 8-hydroxyquinoline as a corrosion inhibitor for mild steel in 1.0 M hydrochloric acid medium. Anal BioanalElectrochem 9:904–928

    CAS  Google Scholar 

  52. Jorcin JB, Orazem ME, Pébère N, Tribollet B (2006) CPE analysis by local electrochemical impedance spectroscopy. Electrochim Acta 51:1473–1479. https://doi.org/10.1016/j.electacta.2005.02.128

    Article  CAS  Google Scholar 

  53. Li G, Ma H, Jiao Y, Chen S (2004) An impedance investigation of corrosion protection of copper by self-assembled monolayers of alkanethiols in aqueous solution. J Serbian Chem Soc 69:791–805. https://doi.org/10.2298/JSC0410791L

    Article  CAS  Google Scholar 

  54. Dhillon S, Kant R (2017) Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance. J Chem Sci 129:1277–1292. https://doi.org/10.1007/s12039-017-1335-x

    Article  CAS  Google Scholar 

  55. Mo S, Li LJ, Luo HQ, Li NB (2017) An example of green copper corrosion inhibitors derived from flavor and medicine: vanillin and isoniazid. J Mol Liq 242:822–830. https://doi.org/10.1016/j.molliq.2017.07.081

    Article  CAS  Google Scholar 

  56. Ahamad I, Prasad R, Quraishi MA (2010) Thermodynamic, electrochemical and quantum chemical investigation of some Schiff bases as corrosion inhibitors for mild steel in hydrochloric acid solutions. Corros Sci 52:933–942. https://doi.org/10.1016/j.corsci.2009.11.016

    Article  CAS  Google Scholar 

  57. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  58. Lee C, YoungW, Parr RG (1989) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev A 162:165–169. https://doi.org/10.1103/PhysRevB.37.785

    Article  Google Scholar 

  59. Zarrouk A, Hammouti B, Dafali A, Bouachrine M, Zarrok H, Boukhris S, al-Deyab SS (2014) A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid. J Saudi Chem Soc 18:450–455. https://doi.org/10.1016/j.jscs.2011.09.011

    Article  CAS  Google Scholar 

  60. Olsen RA, Kroes GJ, Baerends EJ (1999) Atomic and molecular hydrogen interacting with Pt(111). J Chem Phys 111:11155–11163. https://doi.org/10.1063/1.480473

    Article  CAS  Google Scholar 

  61. Franchini M, Philipsen PHT, Van Lenthe E, Visscher L (2014) Accurate Coulomb potentials for periodic and molecular systems through density fitting. J Chem Theory Comput 10:1994–2004. https://doi.org/10.1021/ct500172n

    Article  CAS  PubMed  Google Scholar 

  62. PallassanaV, Neurock M, Bruno HL, Hammer B, Nørskov J (1999) Theoretical analysis of hydrogen chemisorption on pd(111), re(0001) and (formula presented) (formula presented) pseudomorphic overlayers. Phys Rev B - Condens Matter Mater Phys 60:6146–6154. https://doi.org/10.1103/PhysRevB.60.6146

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Department of Chemistry, Allama Iqbal Open University, and Islamabad, Pakistan. Author Bhawna Chugh is thankful to NSIT, New Delhi, India for providing financial support as TRF to perform this research work. We are also thankful to our colleagues from respective Institution who assisted directly or indirectly for this research work. The authors are immensely grateful to reviewers for their comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nasima Arshad or Ashish Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1883 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, N., Singh, A.K., Chugh, B. et al. Experimental, theoretical, and surface study for corrosion inhibition of mild steel in 1 M HCl by using synthetic anti-biotic derivatives. Ionics 25, 5057–5075 (2019). https://doi.org/10.1007/s11581-019-03028-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03028-y

Keywords

Navigation