Skip to main content
Log in

Water-dispersible graphene–wrapped MnO2 nanospheres and their applications in coin cell supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A highly stable and more water-dispersible graphene (WDG) was synthesized using microwave-assisted ball milling technique. The WDG-wrapped MnO2 nanocomposites were prepared for two mass ratios of nanospheres and graphene sheets using reflux method. Comprehensive characterization of the prepared WDG-Mn1 and WDG-Mn2 hybrid nanocomposites was carried out to explore the electrochemical capacitance behaviors. The WDG-Mn1 and WDG-Mn2 electrodes showed capacitance performance of 130 F g−1 at 0.5 A g−1 and 178 F g−1 at 0.5 A g−1, respectively. The WDG-Mn2 electrode revealed enhanced capacitance performance, that is, 84% of its initial capacitance was retained even after repeating the cyclic voltammetry test for 3000 cycles. This study reveals the enhanced capacity performance in WDG-Mn2 nanocomposite hybrid materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ma L, Liu R, Niu H, Zhao M, Huang Y (2016) Flexible and freestanding electrode based on polypyrrole/graphene/bacterial cellulose paper for supercapacitor. Compos Sci Technol 137:87–93

    Article  CAS  Google Scholar 

  2. Wang H, Casalongue HS, Liang Y, Dai H (2010) Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc 132:7472–7477

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Yu F, Wang G, Chen L, Dai B, Peng S (2018) Nitrogen and sulfur self-doped activated carbon directly derived from elm flower for high-performance supercapacitors. ACS Omega 3:4724–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sources 196:5990–5996

    Article  CAS  Google Scholar 

  5. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J Phys Chem B 109:20207–20214

    Article  CAS  PubMed  Google Scholar 

  6. Siva P, Prabu P, Selvam M, Karthik S, Rajendran V (2017) Electrocatalytic conversion of carbon dioxide to urea on nano FeTiO3 surface. Ionics 23:1871–1878

    Article  CAS  Google Scholar 

  7. Srither SR, Karthik A, Arunmetha A, Murugesan D, Rajendran V (2016) Electrochemical supercapacitor studies of porous MnO2 nanoparticles in neutral electrolytes. Mater Chem Phys 183:375–382

    Article  CAS  Google Scholar 

  8. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196(1):1–12

    Article  CAS  Google Scholar 

  9. Chen S, Zhu J, Wu X, Han Q (2010) Graphene oxide−MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  10. Chen Y, Zhang X, Zhang D, Yu P, Ma Y (2011) High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 49:573–580

    Article  CAS  Google Scholar 

  11. Novoselov KS, Geim AK, Morosov SV, Jiang D, Zhang Y, Dubunos SV, Firosov AA (2004) Electric field effect in atomically thin carbon films. SCIRP 306:666–669

    CAS  Google Scholar 

  12. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  CAS  PubMed  Google Scholar 

  13. Tan YB, Lee JM (2013) Graphene for supercapacitor applications. RSC 1:14814–14843

    CAS  Google Scholar 

  14. Jian-Gan W, Feiyu K, Bingqing W (2015) Engineering of MnO2-based nanocomposites for high performance supercapacitors. Prog Mater Sci 74:51–124

    Article  CAS  Google Scholar 

  15. Yu G, Xie X, Pan L, Bao Z, Cui Y (2013) Hybrid nanostructured materials for high-performance electrochemical capacitor. Nano Energy 2:213–234

    Article  CAS  Google Scholar 

  16. Devaraj S, Munichandraiah N (2008) Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties. J Phys Chem C 112:4406–4417

    Article  CAS  Google Scholar 

  17. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  PubMed  Google Scholar 

  18. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene/MnO2 nanocomposites as supercapacitor electrodes. Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  19. Xu M, Kong L, Zhou W, Li H (2007) Hydrothermal synthesis and pesudocapacitance properties of alfa MnO2 hollow spheres and hollow urchins. J Phys Chem C 111:19141–19147

    Article  CAS  Google Scholar 

  20. Liu R, Lee SB (2008) MnO2 / poly (3,4 ethylenedioxythiphene) coaxial nanowires by one step coelectrodeposition foe electrochemical energy storage. J Am Chem Soc 130:2942–2943

    Article  CAS  PubMed  Google Scholar 

  21. Yu C, Zhang L, Shi J, Shao J, Gao J, Yan D (2008) A simple template free strategy to synthesise nanoporous manganese and nickel oxides with nanopore size distribution and their electrochemical properties. Adv Funct Mater 18:1544–1554

    Article  CAS  Google Scholar 

  22. Yang S, Feng X, Ivanovici S, Mullen K (2010) Fabrication of graphene encapsulated oxide nanoparticles; towards high performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411

    Article  CAS  Google Scholar 

  23. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22:5306–5313

    Article  CAS  Google Scholar 

  24. Wang H, Cui LF, Yang Y, Sanchez CH, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4 graphene hybrid as high capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980

    Article  CAS  PubMed  Google Scholar 

  25. Li S, Liyin H, Shuanlong D, Jianning Z, Xiujuan Q (2018) Plumage-like MnO2@NiCo2O4 core-shell architectures for high-efficiency energy storage: the synergistic effect of ultralong MnO2 “scaffold” and ultrathin NiCo2O4 “fluff”. IONICS 24:3227–3235

    Article  CAS  Google Scholar 

  26. Mengya F, Guowei Z, Qinghua D, Li S, Zhipeng M, Xiujuan Q, Guangjie S (2017) Co3O4@MnO2 core shell arrays on nickel foam with excellent electrochemical performance for aqueous asymmetric supercapacitor. Ionics 23:1637–1643

    Article  CAS  Google Scholar 

  27. Jia L, Shi Y, Zhang Q, Xu X (2018) Green synthesis of ultrafine methyl-cellulose-derived porous carbon/MnO2 nanowires for asymmetric supercapacitors and flexible pattern stamping. Appl Surf Sci 462:923–931

    Article  CAS  Google Scholar 

  28. Zhou Y, Ma L, Gan M, Ye M, Li X, Zhai Y, Yan F, Cao F (2018) Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors. Appl Surf Sci 444:1–9

    Article  CAS  Google Scholar 

  29. Chen Q, Chen J, Zhou Y, Song C, Tian Q, Xu J, Wong CP (2018) Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci 440:1027–1036

    Article  CAS  Google Scholar 

  30. Liu T, Jiang C, You W, Yu J (2017) Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance. J Mater Chem A 5:8635–8643

    Article  CAS  Google Scholar 

  31. Shude L, Kwan SH, Kwun NH (2015) 1D hierarchical MnCo2O4 nanowire@MnO2 sheet core-shell arrays on graphite paper as superior electrodes for asymmetric supercapacitors. Chemnanomat 1:8

    Google Scholar 

  32. Xiaoyi H, Tao P, Qiuhong Y, Rongjie L, Xianming L, Yingge Z, Yange W, Yan G, Jang KK, Yongsong L (2017) Facile synthesis of holothurian-like gamma-MnS/carbon nanotube nanocomposites for flexible all-solid-state supercapacitors. ChemNanoMat 3:551–559

    Article  CAS  Google Scholar 

  33. Muhammad SB, Yongchao H, Weitao QHY, Hongbing J, Yexiang T (2017) Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater Today 20:425–451

    Article  CAS  Google Scholar 

  34. Lamberti A, Gigot A, Bianco A, Fontana M, Castellino M, Tresso M, Pirri CF (2016) Self-assembly of graphene aerogel on copper wire for wearable fiber-shaped supercapacitors. Carbon 105:649–654

    Article  CAS  Google Scholar 

  35. Yaqiong C, Zhangpeng L, Jinqing W, Zunli M, Shengrong Y (2019) Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors. J Alloys Compd 775:1206–1212

    Article  CAS  Google Scholar 

  36. Laurie W (2016) Self-assembled supercapacitor wires for e-textiles. Mater Today 19:422–422

    Google Scholar 

  37. Paul H, Mohanta D (2011) Hydrazine reduced exfoliated graphene/graphene oxide layers and magnetoconductance measurements of Ge-supported graphene layers. Appl Phys A Mater Sci Process 103:395–402

    Article  CAS  Google Scholar 

  38. Zhai D, Li B, Du H, Gao G, Gan L, He Y, Yang Q, Kang F (2012) The preparation of graphene decorated with manganese dioxide nanoparticles by electrostatic adsorption for use in supercapacitors. Carbon 50(14):5034–5043

    Article  CAS  Google Scholar 

  39. Fei H, Saha N, Kazantseva N, Moucka R, Cheng Q, Saha PA (2017) Highly flexible supercapacitor based on MnO2/RGO nanosheets and bacterial cellulose-filled gel electrolyte. Materials 10(11):1251

    Article  CAS  PubMed Central  Google Scholar 

  40. Zhu J, He J (2012) Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors. ACS Appl Mater Interfaces 4:1770–1776

    Article  CAS  PubMed  Google Scholar 

  41. Green AA, Hersam MC (2010) Emerging methods for producing monodisperse graphene dispersions. J Phys Chem Lett 1(2):544–549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  43. Zhong W, Wencai R, Dawei W, Feng L, Bilu L, Cheng HM (2010) High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 4:5835–5842

    Article  CAS  Google Scholar 

  44. Selvam M, Sakthipandi K, Suriyaprabh R, Saminathan K, Rajendran V (2013) Synthesis and characterization of electrochemically-reduced graphene. Bull Mater Sci 36:1315–1321

    Article  CAS  Google Scholar 

  45. Saminathan K, Mayilvel M, Selvam M, Srithar SR, Rajendran V, Kaler KVIS (2015) Water soluble graphene as electrolyte additive in magnesium air battery system. J Power Sources 276:32–38

    Article  CAS  Google Scholar 

  46. Ankamwar B, Surti F (2012) Water soluble graphene synthesis. Chem Sci Trans 3:500–507

    Article  CAS  Google Scholar 

  47. Kumar BMP, Karikkat S, Krishna RH, Udayasankara TH, Sivaprasad KH, Nagabhushana BM (2014) Synthesis, characterisation of Nano MnO2 and its adsorption characteristics over an Azo dye. RRJMS 2:27–31

    CAS  Google Scholar 

  48. Gaini Z, Lijun R, LingJuan D, Jianfang W, Liping K, Zong-Huai L (2014) Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor. Mater Res Bull 49:577–583

    Article  CAS  Google Scholar 

  49. Yong Q, Shunbao L, Fenglei G (2011) Preparation of MnO2/graphene composite as electrode material for supercapacitors. J Mater Sci 46:3517–3522

    Article  CAS  Google Scholar 

  50. Chengzhou Z, Shaojun G, Youxing F, Lei H, Erkang W, Shaojun D (2011) One-step electrochemical approach to the synthesis of graphene/MnO2 nanowall hybrids. Nano Res 4:648–657

    Article  CAS  Google Scholar 

  51. Yu P, Zhang X, Chen Y, Ma Y, Qi Z (2009) Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method. Mater Chem Phys 118:303–307

    Article  CAS  Google Scholar 

  52. Kaviyarasu K, Manikandan E, Maaza M (2015) Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance. J Alloys Compd 648:559–563

    Article  CAS  Google Scholar 

  53. Khamlich S, Abdullaeva S, Kennedy JV, Maaza M (2017) High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl Surf Sci 405:329–336

    Article  CAS  Google Scholar 

  54. Ismail E, Khamlich S, Dhlamini M, Maaza M (2016) Green biosynthesis of ruthenium oxide nanoparticles on nickel foam as electrode material for supercapacitor applications. RSC Adv 6(90):86843–86850

    Article  CAS  Google Scholar 

  55. Sone BT, Fuku XG, Maaza M (2016) Physical & electrochemical properties of green synthesized bunsenite NiO nanoparticles via Callistemon viminalis’ extract. Int J Electrochem Sci 11(10):8204–8220

    Article  CAS  Google Scholar 

  56. Sheng C, Junwu Z, Xiaodong W, Qiaofeng H, Xin W (2010) Graphene oxide -MnO2 nanocomposites for supercapacitors. ACS Nano 4:2822–2830

    Article  CAS  Google Scholar 

  57. Khamlich S, Nuru ZY, Bello A, Fabiane M, Dangbegnon JK, Manyala N, Maaza M (2015) Pulsed laser deposited Cr2O3 nanostructured thin film on graphene as anode material for lithium-ion batteries. J Alloy Compd 637:219–225. https://doi.org/10.1016/j.jallcom.2015.02.155

    Article  CAS  Google Scholar 

  58. Assumpta CN, Daniel O, Kenneth IO, Rose UO, Chawki A, Andreas R, Malik M, Federico R, Fabian IE (2016) Facile synthesis of nanosheet-like CuO film and its potential application as a high-performance pseudocapacitor electrode. Electrochim Acta 198:220–230

    Article  CAS  Google Scholar 

  59. Genene TM, Elhadi AAA, Bidini AT, Kaviyarasu K, Ishaq A, Maaza M (2016) Growth and characterization of V2O5 thin film on conductive electrode. J Microsc 00:1–8

    Google Scholar 

  60. Anass D, Jacques L, Claude S, Serge B, Mohammed AL, Jean-Claude M, Malik M (2000) Optical properties of Ag–TiO2 nano cermet films prepared by co sputtering and multilayer deposition techniques. Appl Opt 39:13

    Google Scholar 

  61. Zebib YN, Arendse CJ, Nemutudi R, Nemraoui O, Maaza M (2012) Pt–Al2O3 nano coatings for high temperature concentrated solar thermal power applications. J Phys B 407:1634–1637

    Article  CAS  Google Scholar 

  62. Becerril HA, Mao J, Liu ZF, Stoltenberg RM, Bao Z, Chen YS (2008) Evaluation of solution processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support extended by Dr. M. Sathish, Scientist, CSIR-CECRI, Karaikudi, in carrying out the battery cell test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Venkatachalam.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanisamy, S., Shyma, A.P., Srinivasan, S. et al. Water-dispersible graphene–wrapped MnO2 nanospheres and their applications in coin cell supercapacitors. Ionics 25, 4425–4436 (2019). https://doi.org/10.1007/s11581-019-03004-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03004-6

Keywords

Navigation