Skip to main content
Log in

Electrochemical polymerization of 4,4′-thiobis-phenol in alkaline solution and properties of polymer

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrochemical polymerization of 4,4′-thiobis-phenol in different concentrations of alkaline media has been carried out using cyclic voltammetry. Electrochemical autocatalytic reaction of poly(4,4′-thiobis-phenol) (TDP) in a high concentration of alkaline medium was verified by potentiostatic and galvanostatic electrolysis. PolyTDP showed different electrochemical activities in solutions with different pH. The electrochemical impedance spectroscopy (EIS) was used to characterize the polyTDP. The visible and FT-IR spectra of polyTDP were also measured. Scanning electron microscopy showed that the prepared polyTDP film exhibited a dense, uniform structure, which makes it a potential material for sensor construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maricq MM, Waugh JS, MacDiarmid AG, Shirakawa H, Heeger AJ (1978) Carbon-13 nuclear magnetic resonance of cis-and trans-polyacetylenes. J Am Chem Soc 100(24):7729–7730. https://doi.org/10.1002/chin.197909069

    Article  CAS  Google Scholar 

  2. Ramanavičius A, Ramanavičienė A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51(27):6025–6037. https://doi.org/10.1016/j.electacta.2005.11.052

    Article  CAS  Google Scholar 

  3. Bujak P, Kulszewicz-Bajer I, Zagorska M, Maurel V, Wielgus I, Pron A (2013) Polymers for electronics and spintronics. Chem Soc Rev 42(23):8895–8999. https://doi.org/10.1039/c3cs60257e

    Article  CAS  PubMed  Google Scholar 

  4. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym-Plast Technol Eng 51(14):1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  5. Bajpai M, Srivastava R, Dhar R, Tiwari RS (2016) Review on optical and electrical properties of conducting polymers. Indian J Mater Sci 2016. https://doi.org/10.1155/2016/5842763

  6. Guiseppi-Elie A (2010) Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 31(10):2701–2716. https://doi.org/10.1016/j.biomaterials.2009.12.052

    Article  CAS  PubMed  Google Scholar 

  7. Lin P, Yan F (2012) Organic thin-film transistors for chemical and biological sensing. Adv Mater 24(1):34–51. https://doi.org/10.1002/adma.201103334

    Article  CAS  PubMed  Google Scholar 

  8. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10(6):2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  Google Scholar 

  9. Wang X, Wang T, Yang C, Li H, Liu P (2013) Well-defined flake-like polypyrrole grafted graphene nanosheets composites as electrode materials for supercapacitors with enhanced cycling stability. Appl Surf Sci 287:242–251. https://doi.org/10.1016/j.apsusc.2013.09.134

    Article  CAS  Google Scholar 

  10. Shiri HM, Ehsani A, Shayeh JS (2015) Synthesis and highly efficient supercapacitor behavior of a novel poly pyrrole/ceramic oxide nanocomposite film. RSC Adv 5(110):91062–91068. https://doi.org/10.1039/c5ra19863a

    Article  Google Scholar 

  11. Ehsani A, Mahjani MG, Babaei F, Mostaanzadeh H (2015) Physioelectrochemical and DFT investigation of metal oxide/p-type conductive polymer nanoparticles as an efficient catalyst for the electrocatalytic oxidation of methanol. RSC Adv 5(38):30394–30404. https://doi.org/10.1039/c5ra02297e

    Article  Google Scholar 

  12. Parker VD (1973) The anodic oxidation of hydroquinone in acetonitrile. On the question of a possible one electron intermediate. Electrochim Acta 18(8):519–524. https://doi.org/10.1016/0013-4686(73)85012-1

    Article  CAS  Google Scholar 

  13. Glarum SH, Marshall JH (1987) The in situ ESR and electrochemical behavior of poly (aniline) electrode films. J Electrochem Soc 134(9):2160–2165. https://doi.org/10.1149/1.2100843

    Article  CAS  Google Scholar 

  14. AlObaidi F, Ye Z, Zhu S (2003) Ethylene polymerization with silica-supported nickel-diimine catalyst: effect of support and polymerization conditions on catalyst activity and polymer properties. Macromol Chem Phys 204(13):1653–1659. https://doi.org/10.1002/macp.200350020

    Article  CAS  Google Scholar 

  15. Karyakin AA, Karyakina EE, Schmidt HL (1999) Electropolymerized azines: a new group of electroactive polymers. Electroanalysis 11(3):149–155. https://doi.org/10.1002/(sici)1521-4109(199903)11:3<149::aid-elan149>3.0.co;2-g

    Article  CAS  Google Scholar 

  16. Li Y, Qian R (1989) Effect of anion and solution pH on the electrochemical behavior of polypyrrole in aqueous solution. Synth Met 28(1–2):127–132. https://doi.org/10.1016/0379-6779(89)90509-2

    Article  Google Scholar 

  17. Hou H, Vacandio F, Di Vona ML, Knauth P (2012) Sulfonated polyphenyl ether by electropolymerization. Electrochim Acta 81:58–63. https://doi.org/10.1016/j.electacta.2012.07.082

    Article  CAS  Google Scholar 

  18. Pham MC, Adami F, Dubois JE (1987) An in situ multiple internal reflection Fourier transform infrared spectroscopy investigation of the electropolymerization mechanism of substituted phenols on iron electrodes. J Electrochem Soc 134(9):2166–2169. https://doi.org/10.1149/1.2100844

    Article  CAS  Google Scholar 

  19. Wang Y, Knoll W (2006) In situ electrochemical and surface plasmon resonance (SPR) studies of aniline-carboxylated aniline copolymers. Anal Chim Acta 558(1–2):150–157. https://doi.org/10.1016/j.aca.2005.11.006

    Article  CAS  Google Scholar 

  20. Qingfeng Y (2002) Electrochemical oxidation of aqueous Na2S solution on Pt electrodes. Chin J Rare Metals 26(6):448–451. https://doi.org/10.3969/j.issn.0258-7076.2002.06.010

    Article  Google Scholar 

  21. Shen-Tu C, Liu Z, Kong Y, Yao C, Tao Y (2013) Electrochemical synthesis and properties of poly (azure B). J Electrochem Soc 160(6):G83–G87. https://doi.org/10.1149/2.071306jes

    Article  CAS  Google Scholar 

  22. Chiu YC, Tsai HC, Chou IC, Lin WN, Yang SY, Tien HW, Ma CCM (2010) Preparation, intermolecular motion, and thermal properties of thiodiphenyl epoxy. J Appl Polym Sci 118(4):2116–2125. https://doi.org/10.1002/app.32602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Jiangsu Provincial Key Laboratory of Advanced Catalytic Materials and Technology.

Funding

Financial support was received from the Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2018-03-05)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Jiang or Qi Meng.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Xie, L., Jiang, Y. et al. Electrochemical polymerization of 4,4′-thiobis-phenol in alkaline solution and properties of polymer. Ionics 25, 4493–4498 (2019). https://doi.org/10.1007/s11581-019-02998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02998-3

Keywords

Navigation