, Volume 25, Issue 9, pp 4371–4380 | Cite as

Porous nitrogen-doped carbon networks derived from orange peel for high-performance supercapacitors

  • Hao GouEmail author
  • Jingxian He
  • Guohu Zhao
  • Li Zhang
  • Cailing Yang
  • Honghong Rao
Original Paper


A novel type of porous nitrogen-doped carbon networks derived from a green biomass-waste (orange peel) by integrated carbonization, activation, and nitrogen-doped processes using FeCl3 as activating agent and urea as nitrogen precursor and gasification expander. The porous nitrogen-doped orange peel-based carbon networks (PN-OPC) possessed interconnected porous carbon networks morphology, high specific surface area (1514.2 m2 g−1), reasonable pore size (2.9 nm), and high nitrogen content (about 7.8 wt%). This unique porous network structure and rich nitrogen-dopant leads to fast penetration of electrolyte ions and transmission of electrons, which endow the PN-OPC electrode material with high specific capacitance of 255 F g−1 at current density of 0.5 A g−1 and superior rate capability in 6 mol L−1 KOH aqueous electrolyte. Moreover, the symmetric supercapacitor based on PN-OPC electrode exhibits high specific energy of 16 Wh kg−1 at specific power of 400 W kg−1 operated in the voltage range 0–1.6 V in 0.5 M Li2SO4 aqueous electrolyte, and impressive cyclic stability with 96% after 5000 charge/discharge cycles. Therefore, the present work will open a new strategy to design and fabricate novel porous nitrogen-doped carbon network electrode materials for high-performance supercapacitor.


Orange peel Nitrogen-doped Carbon networks Activating agent Supercapacitors 


Funding information

The research was financially supported by the Young Teacher Foundation of Lanzhou City University (LZCU-QN2017-17), the Young Teacher Foundation of Lanzhou City University (LZCU-QN2017-23), the Doctoral Research Initiation Fund (LZCU-BS2018-02), the Higher Education Project of Gansu Province (2016A-069), and the Financial Support from National Science Foundation of China (Grant No.21765013).


  1. 1.
    Gulzar U, Goriparti S, Miele E, Li T, Maidecchi G, Toma A, De Angelis F, Capiglia C, Zaccaria RP (2016) Next-generation textiles: from embedded supercapacitors to lithium ion batteries. J Mater Chem A 4(43):16771–16800CrossRefGoogle Scholar
  2. 2.
    Haldar P, Biswas S, Sharma V, Chandra A (2018) Understanding the origin of magnetic field dependent specific capacitance in Mn3O4 nanoparticle based supercapacitors. J Electrochem Soc 165(14):A3230–A3239CrossRefGoogle Scholar
  3. 3.
    He Y, Yang X, An N, Wang X, Yang Y, Hu Z (2019) Covalently functionalized heterostructured carbon by redox-active p-phenylenediamine molecules for high-performance symmetric supercapacitors. New J Chem 43(4):1688–1698CrossRefGoogle Scholar
  4. 4.
    El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  5. 5.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefPubMedGoogle Scholar
  6. 6.
    Li C, He D, Huang Z-H, Wang M-X (2018) Hierarchical micro−/mesoporous carbon derived from rice husk by hydrothermal pre-treatment for high performance supercapacitor. J Electrochem Soc 165(14):A3334–A3341CrossRefGoogle Scholar
  7. 7.
    An N, Hu Z, Wu H, Yang Y, Lei Z, Dong W (2017) Organic multi-electron redox couple-induced functionalization for enabling ultrahigh rate and cycling performances of supercapacitors. J Mater Chem A 5(48):25420–25430CrossRefGoogle Scholar
  8. 8.
    Ding J, Yang J, Ji S, Huo S, Wang H (2019) Core-shell structured Fe3O4@MnO2 nanospheres to achieve high cycling stability as electrode for supercapacitors. Ionics 25(2):665–673CrossRefGoogle Scholar
  9. 9.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614CrossRefGoogle Scholar
  10. 10.
    An N, An Y, Hu Z, Guo B, Yang Y, Lei Z (2015) Graphene hydrogels non-covalently functionalized with alizarin: an ideal electrode material for symmetric supercapacitors. J Mater Chem A 3(44):22239–22246CrossRefGoogle Scholar
  11. 11.
    Han Y, Lai Z, Wang Z, Yu M, Tong Y, Lu X (2018) Designing carbon based supercapacitors with high energy density: a summary of recent Progress. Chem Eur J 24(29):7312–7329CrossRefPubMedGoogle Scholar
  12. 12.
    Ding X, Zhu J, Hu G, Zhang S (2019) Core–shell structured CoNi2S4@polydopamine nanocomposites as advanced electrode materials for supercapacitors. Ionics 25(2):897–901CrossRefGoogle Scholar
  13. 13.
    Béguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26(14):2219–2251CrossRefPubMedGoogle Scholar
  14. 14.
    Mitravinda T, Nanaji K, Anandan S, Jyothirmayi A, Chakravadhanula VSK, Sharma CS, Rao TN (2018) Facile synthesis of corn silk derived nanoporous carbon for an improved supercapacitor performance. J Electrochem Soc 165(14):A3369–A3379CrossRefGoogle Scholar
  15. 15.
    Li X, Wei B (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2(2):159–173CrossRefGoogle Scholar
  16. 16.
    Ning X, Zhong W, Li S, Wang Y, Yang W (2014) High performance nitrogen-doped porous graphene/carbon frameworks for supercapacitors. J Mater Chem A 2(23):8859–8867CrossRefGoogle Scholar
  17. 17.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6(10):2839–2855CrossRefGoogle Scholar
  18. 18.
    Peng H, Ma G, Sun K, Zhang Z, Yang Q, Lei Z (2016) Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim Acta 190:862–871CrossRefGoogle Scholar
  19. 19.
    Wang H, Yi H, Zhu C, Wang X, Jin Fan H (2015) Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13:658–669CrossRefGoogle Scholar
  20. 20.
    Peng H, Ma G, Sun K, Mu J, Lei Z (2014) One-step preparation of ultrathin nitrogen-doped carbon nanosheets with ultrahigh pore volume for high-performance supercapacitors. J Mater Chem A 2(41):17297–17301CrossRefGoogle Scholar
  21. 21.
    Xiao X, Han E, Zeng Z, Zhu L, Li L, Liu Z (2019) Nanostructure NiCo2S4 with different morphologies grown on Ni foam for high-performance supercapacitors. IonicsGoogle Scholar
  22. 22.
    Zhang M, Yang C, Wang Y, Gao F, Cheng J, Zhang J (2018) High-performance supercapacitor based on nitrogen and phosphorus co-doped nonporous polybenzoxazine-based carbon electrodes. J Electrochem Soc 165(14):A3313–A3320CrossRefGoogle Scholar
  23. 23.
    Bose S, Kuila T, Mishra AK, Rajasekar R, Kim NH, Lee JH (2012) Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J Mater Chem 22(3):767–784CrossRefGoogle Scholar
  24. 24.
    Dai L, Chang DW, Baek J-B, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166CrossRefPubMedGoogle Scholar
  25. 25.
    Xiao K, Liu H, Li Y, Yi L, Zhang X, Hu H, Yao H (2018) Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization. Bioresour Technol 265:432–436CrossRefPubMedGoogle Scholar
  26. 26.
    Peng H, Ma G, Sun K, Mu J, Zhang Z, Lei Z (2014) Facile synthesis of poly(p-phenylenediamine)-derived three-dimensional porous nitrogen-doped carbon networks for high performance supercapacitors. J Phys Chem C 118(51):29507–29516CrossRefGoogle Scholar
  27. 27.
    Peng H, Ma G, Sun K, Zhang Z, Yang Q, Ran F, Lei Z (2015) A facile and rapid preparation of highly crumpled nitrogen-doped graphene-like nanosheets for high-performance supercapacitors. J Mater Chem A 3(25):13210–13214CrossRefGoogle Scholar
  28. 28.
    Wakeland S, Martinez R, Grey JK, Luhrs CC (2010) Production of graphene from graphite oxide using urea as expansion–reduction agent. Carbon 48(12):3463–3470CrossRefGoogle Scholar
  29. 29.
    Fan L, Liu Q, Chen S, Xu Z, Lu B (2017) Soft carbon as anode for high-performance sodium-based dual ion full battery. Adv Energy Mater 7(14):1602778CrossRefGoogle Scholar
  30. 30.
    Reddy ALM, Srivastava A, Gowda SR, Gullapalli H, Dubey M, Ajayan PM (2010) Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 4(11):6337–6342CrossRefPubMedGoogle Scholar
  31. 31.
    Wang G, Wang H, Lu X, Ling Y, Yu M, Zhai T, Tong Y, Li Y (2014) Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. Adv Mater 26(17):2676–2682CrossRefPubMedGoogle Scholar
  32. 32.
    Zhao J, Lai H, Lyu Z, Jiang Y, Xie K, Wang X, Wu Q, Yang L, Jin Z, Ma Y, Liu J, Hu Z (2015) Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Adv Mater 27(23):3541–3545CrossRefPubMedGoogle Scholar
  33. 33.
    Eliad L, Salitra G, Soffer A, Aurbach D (2001) Ion sieving effects in the electrical double layer of porous carbon electrodes: estimating effective ion size in electrolytic solutions. J Phys Chem B 105(29):6880–6887CrossRefGoogle Scholar
  34. 34.
    Kondrat S, Pérez CR, Presser V, Gogotsi Y, Kornyshev AA (2012) Effect of pore size and its dispersity on the energy storage in nanoporous supercapacitors. Energy Environ Sci 5(4):6474–6479CrossRefGoogle Scholar
  35. 35.
    Chang Z, Yang Y, Li M, Wang X, Wu Y (2014) Green energy storage chemistries based on neutral aqueous electrolytes. J Mater Chem A 2(28):10739–10755CrossRefGoogle Scholar
  36. 36.
    Demarconnay L, Raymundo-Piñero E, Béguin F (2010) A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution. Electrochem Commun 12(10):1275–1278CrossRefGoogle Scholar
  37. 37.
    He X, Li R, Qiu J, Xie K, Ling P, Yu M, Zhang X, Zheng M (2012) Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template. Carbon 50(13):4911–4921CrossRefGoogle Scholar
  38. 38.
    Wang Q, Yan J, Wei T, Feng J, Ren Y, Fan Z, Zhang M, Jing X (2013) Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60:481–487CrossRefGoogle Scholar
  39. 39.
    Huang C, Puziy AM, Sun T, Poddubnaya OI, Suárez-García F, Tascón JMD, Hulicova-Jurcakova D (2014) Capacitive behaviours of phosphorus-rich carbons derived from lignocelluloses. Electrochim Acta 137:219–227CrossRefGoogle Scholar
  40. 40.
    Guo Y, Shi Z-q, Chen M-m, Wang C-y (2014) Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J Power Sources 252:235–243CrossRefGoogle Scholar
  41. 41.
    Sun L, Tian C, Li M, Meng X, Wang L, Wang R, Yin J, Fu H (2013) From coconut shell to porous graphene-like nanosheets for high-power supercapacitors. J Mater Chem A 1(21):6462–6470CrossRefGoogle Scholar
  42. 42.
    Wang Q, Yan J, Wang Y, Wei T, Zhang M, Jing X, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67:119–127CrossRefGoogle Scholar
  43. 43.
    Tan Y, Xu C, Chen G, Liu Z, Ma M, Xie Q, Zheng N, Yao S (2013) Synthesis of ultrathin nitrogen-doped graphitic carbon nanocages as advanced electrode materials for supercapacitor. Appl Mater Interfaces 5(6):2241–2248CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Hao Gou
    • 1
    • 2
    Email author
  • Jingxian He
    • 1
  • Guohu Zhao
    • 1
    • 2
  • Li Zhang
    • 1
  • Cailing Yang
    • 1
    • 2
  • Honghong Rao
    • 1
    • 2
  1. 1.School of Chemistry and Chemical EngineeringLanzhou City UniversityLanzhouPeople’s Republic of China
  2. 2.Provincical Key Laboratory of Gansu Higher Education for City Environmental Pollution ControlLanzhouPeople’s Republic of China

Personalised recommendations