Advertisement

Ionics

, Volume 25, Issue 9, pp 4351–4360 | Cite as

High energy density supercapacitor based on N/B co-doped graphene nanoarchitectures and ionic liquid electrolyte

  • Zhongliang Yu
  • Jiahe Zhang
  • Chunxian Xing
  • Lei Hu
  • Lili Wang
  • Ming Ding
  • Haitao ZhangEmail author
Original Paper
  • 124 Downloads

Abstract

Boron-nitrogen co-doped graphene nanoarchitectures were synthesized by annealing a freeze-dried precursor containing exfoliated graphene oxide (GO) nanosheets, ammonium borate, and polyvinyl alcohol (PVA). The microstructures and composition of nanocomposites were optimized and characterized systemically. Effects of a doping element on the electrochemical performances and interface compatibility were evaluated. The restacking of exfoliated graphene nanosheets was hindered effectively by the ultra-fine carbon clusters formed via the thermal decomposition of PVA. Such a three-dimensional structure favors the fast mobility of electrolyte ions. In addition, the co-doping of N and B elements not only increases interface compatibility between ionic liquid electrolyte and graphene but also supplies extra pseudocapacitance. Benefiting from the integrated merits, the optimized nanocomposites could deliver a specific capacitance of 35.4 F g−1 at 1 A g−1 and present a maximum energy density of 78.7 Wh kg−1 with a power density of 2043 W kg−1. Due to the formation of more decoupled ions in ionic liquid electrolyte at elevated temperature, the symmetric supercapacitors based on the as-formed nanocomposite exhibit a maximum energy density of 134.6 Wh kg−1 at 60 °C.

Keywords

Doping effect Graphene Supercapacitor Ionic liquid 

Notes

Funding information

This work was financially supported by the National Key Research and Development Program of China (2016YFB0100303), Key Research Program of Frontier Sciences (QYZDY-SSW-JSC011), and the National Natural Science Foundation of China (No. 21878308). Prof. Suojiang Zhang (IPE, CAS) is sincerely appreciated for his careful academic guidance and great support.

References

  1. 1.
    Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536CrossRefGoogle Scholar
  2. 2.
    Jiao Y, Zhang H, Zhang H, Liu A, Liu Y, Zhang S (2018) Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Res 11(9):4673–4685CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Zhang H, Liu A, Jiao Y, Shim J-J, Zhang S (2017) Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim Acta 258:343–352CrossRefGoogle Scholar
  4. 4.
    Tehrani Z, Thomas DJ, Korochkina T, Phillips CO, Lupo D, Lehtimäki S, O'Mahony J, Gethin DT (2017) Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 118:1313–1321CrossRefGoogle Scholar
  5. 5.
    Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614Google Scholar
  6. 6.
    Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefPubMedGoogle Scholar
  8. 8.
    Attias R, Sharon D, Borenstein A, Malka D, Hana O, Luski S, Aurbach D (2017) Asymmetric supercapacitors using chemically prepared MnO2 as positive electrode materials. J Electrochem Soc 164(9):A2231–A2237CrossRefGoogle Scholar
  9. 9.
    Nitin C, Chao L, Julian M, Narasimha N, Lei Z, Yeonwoong J, Jayan T (2017) Supercapacitors: asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336Google Scholar
  10. 10.
    Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34(11):4889–4899CrossRefGoogle Scholar
  11. 11.
    Yang P, Wu Z, Jiang Y, Pan Z, Tian W, Jiang L, Hu L (2018) Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011¯) surface for wearable, all-solid-state supercapacitor. Adv Energy Mater 8(26):1801392Google Scholar
  12. 12.
    Jiang Y, Song Y, Pan Z, Meng Y, Jiang L, Wu Z, Yang P, Gu Q, Sun D, Hu L (2018) Rapid amorphization in metastable CoSeO3•H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12(5):5011–5020CrossRefPubMedGoogle Scholar
  13. 13.
    Jiang Y, Wu Z, Le J, Pan Z, Yang P, Tian W, Hu L (2018) Freestanding CoSeO3•H2O nanoribbon/Carbon Nanotube Composite Paper for 2.4 V High-Voltage, Flexible, Solid-State Supercapacitors. Nanoscale 10:12003–12010Google Scholar
  14. 14.
    Pan Z, Jiang Y, Yang P, Wu Z, Tian W, Liu L, Song Y, Gu Q, Sun D, Hu L (2018) In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12(3):2968–2979Google Scholar
  15. 15.
    Jiang Y, Song Y, Li Y, Tian W, Pan Z, Yang P, Li Y, Gu Q, Hu L (2017) Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl Mater Interfaces 9(43):37645–37654CrossRefPubMedGoogle Scholar
  16. 16.
    Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81CrossRefGoogle Scholar
  17. 17.
    Salanne M (2017) Ionic liquids for supercapacitor applications. Top Curr Chem (Cham) 375(3):63CrossRefGoogle Scholar
  18. 18.
    Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24(36):4924–4955CrossRefPubMedGoogle Scholar
  19. 19.
    Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3):324–343CrossRefGoogle Scholar
  20. 20.
    Wang DW, Li F, Chen ZG, Lu GQ, Chen HM (2008) Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater 20(22):7195–7200Google Scholar
  21. 21.
    Thirumal V, Pandurangan A, Jayavel R, Ilangovan R (2016) Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications. Synth Met 220:524–532CrossRefGoogle Scholar
  22. 22.
    Denisa H, Junya Y, Yasushi S, Hiroaki H, Masaya K (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17(5):1241–1247Google Scholar
  23. 23.
    Kota M, Yu X, Yeon S-H, Cheong H-W, Park HS (2016) Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources 303:372–378CrossRefGoogle Scholar
  24. 24.
    Yu X, Kota M, Park HS (2017) Hierarchical structured, nitrogen-incorporated graphene aerogel for high performance supercapacitor. Macromol Res 25(10):1043–1048CrossRefGoogle Scholar
  25. 25.
    Nazarian-Samani M, Haghighat-Shishavan S, Nazarian-Samani M, Kim M-S, Cho B-W, Oh S-H, Kashani-Bozorg SF, Kim K-B (2017) Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors. J Power Sources 372:286–296CrossRefGoogle Scholar
  26. 26.
    Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135CrossRefPubMedGoogle Scholar
  27. 27.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  28. 28.
    Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Preparation of mesoporous carbon by freeze drying. Carbon 37:2049–2055Google Scholar
  29. 29.
    Wang C, Liu H, Yang W (2012) An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. J Mater Chem 22(12):5281–5285Google Scholar
  30. 30.
    Lee YR, Kim SC, Lee H-i, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71CrossRefGoogle Scholar
  31. 31.
    Hu H, Zhao Z, Zhou Q, Gogotsi Y, Qiu J (2012) The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9):3267–3273CrossRefGoogle Scholar
  32. 32.
    Dyatkin B, Gogotsi Y (2014) Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes. Faraday Discuss 172:139–162PubMedGoogle Scholar
  33. 33.
    Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138CrossRefGoogle Scholar
  34. 34.
    Qian W, Gao Q, Li Z, Tian W, Zhang H, Zhang Q (2017) Unusual mesoporous carbonaceous matrix loading with sulphur as the cathode of lithium sulphur battery with exceptional stable high rate performance. ACS Appl Mater Interfaces 9(34):28366–28376CrossRefPubMedGoogle Scholar
  35. 35.
    Zheng L, Wu Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis: sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119Google Scholar
  36. 36.
    Wu W, Leng J, Mei H, Yang S (2018) Defect-rich, boron-nitrogen bonds-free and dual-doped graphenes for highly efficient oxygen reduction reaction. J Colloid Interface Sci 521:11–16CrossRefPubMedGoogle Scholar
  37. 37.
    Liao K, Gao J, Fan J, Mo Y, Xu Q, Min Y (2017) Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors. J Nanopart Res 19(12):397Google Scholar
  38. 38.
    Chen Z, Hou L, Cao Y, Tang Y, Li Y (2018) Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl Surf Sci 435:937–944CrossRefGoogle Scholar
  39. 39.
    Peng Z, Ye R, Mann JA, Zakhidov D, Li Y, Smalley PR, Lin J, Tour JM (2015) Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6):5868–5875CrossRefPubMedGoogle Scholar
  40. 40.
    Lee Y-H, Chang K-H, Hu C-C (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227:300–308CrossRefGoogle Scholar
  41. 41.
    Shen B, Guo R, Lang J, Liu L, Liu L, Yan X (2016) A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J Mater Chem A 4(21):8316–8327CrossRefGoogle Scholar
  42. 42.
    Song H, Fu J, Ding K, Huang C, Wu K, Zhang X, Gao B, Huo K, Peng X, Chu PK (2016) Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J Power Sources 328:599–606CrossRefGoogle Scholar
  43. 43.
    Schneidermann C, Jaeckel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. Chemsuschem 10(11):2543–2543CrossRefGoogle Scholar
  44. 44.
    Zhang H, Zhang S, Zhang X (2016) Experimental discovery of magnetoresistance and its memory effect in methylimidazolium-type iron-containing ionic liquids. Chem Mater 28(23):8710–8714CrossRefGoogle Scholar
  45. 45.
    Y-k A, Kim B, Ko J, You D-J, Yin Z, Kim H, Shin D, Cho S, Yoo J, Kim YS (2016) All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer-ionic liquid electrolyte. J Mater Chem A 4(12):4386–4391CrossRefGoogle Scholar
  46. 46.
    Lian Y, Ni M, Huang Z, Chen R, Zhou L, Utetiwabo W, Yang W (2019) Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chem Eng J 366:313–320CrossRefGoogle Scholar
  47. 47.
    Zhou Y, Ren J, Xia L, Zheng Q, Liao J, Long E, Xie F, Xu C, Lin D (2018) Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochim Acta 284:336–345CrossRefGoogle Scholar
  48. 48.
    Wang J, Ding B, Xu Y, Shen L, Dou H, Zhang X (2015) Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl Mater Interfaces 7(40):22284–22291CrossRefPubMedGoogle Scholar
  49. 49.
    Schneidermann C, Jackel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. ChemSusChem 10(11):2416–2424CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Zhongliang Yu
    • 1
    • 2
  • Jiahe Zhang
    • 1
  • Chunxian Xing
    • 1
  • Lei Hu
    • 1
    • 3
  • Lili Wang
    • 1
    • 3
  • Ming Ding
    • 3
  • Haitao Zhang
    • 1
    Email author
  1. 1.Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process EngineerinChinese Academy of ScienceBeijingPeople’s Republic of China
  2. 2.Department of Biological and Environmental EngineeringHefei UniversityHefeiPeople’s Republic of China
  3. 3.Department of Chemical and Materials EngineeringHefei UniversityHefeiPeople’s Republic of China

Personalised recommendations