Skip to main content

Advertisement

Log in

High energy density supercapacitor based on N/B co-doped graphene nanoarchitectures and ionic liquid electrolyte

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Boron-nitrogen co-doped graphene nanoarchitectures were synthesized by annealing a freeze-dried precursor containing exfoliated graphene oxide (GO) nanosheets, ammonium borate, and polyvinyl alcohol (PVA). The microstructures and composition of nanocomposites were optimized and characterized systemically. Effects of a doping element on the electrochemical performances and interface compatibility were evaluated. The restacking of exfoliated graphene nanosheets was hindered effectively by the ultra-fine carbon clusters formed via the thermal decomposition of PVA. Such a three-dimensional structure favors the fast mobility of electrolyte ions. In addition, the co-doping of N and B elements not only increases interface compatibility between ionic liquid electrolyte and graphene but also supplies extra pseudocapacitance. Benefiting from the integrated merits, the optimized nanocomposites could deliver a specific capacitance of 35.4 F g−1 at 1 A g−1 and present a maximum energy density of 78.7 Wh kg−1 with a power density of 2043 W kg−1. Due to the formation of more decoupled ions in ionic liquid electrolyte at elevated temperature, the symmetric supercapacitors based on the as-formed nanocomposite exhibit a maximum energy density of 134.6 Wh kg−1 at 60 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luo X, Wang J, Dooner M, Clarke J (2015) Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl Energy 137:511–536

    Article  Google Scholar 

  2. Jiao Y, Zhang H, Zhang H, Liu A, Liu Y, Zhang S (2018) Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. Nano Res 11(9):4673–4685

    Article  CAS  Google Scholar 

  3. Zhao Y, Zhang H, Liu A, Jiao Y, Shim J-J, Zhang S (2017) Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. Electrochim Acta 258:343–352

    Article  CAS  Google Scholar 

  4. Tehrani Z, Thomas DJ, Korochkina T, Phillips CO, Lupo D, Lehtimäki S, O'Mahony J, Gethin DT (2017) Large-area printed supercapacitor technology for low-cost domestic green energy storage. Energy 118:1313–1321

    Article  CAS  Google Scholar 

  5. Augustyn V, Simon P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7(5):1597–1614

  6. Lukatskaya MR, Dunn B, Gogotsi Y (2016) Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun 7:12647

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828

    Article  CAS  PubMed  Google Scholar 

  8. Attias R, Sharon D, Borenstein A, Malka D, Hana O, Luski S, Aurbach D (2017) Asymmetric supercapacitors using chemically prepared MnO2 as positive electrode materials. J Electrochem Soc 164(9):A2231–A2237

    Article  CAS  Google Scholar 

  9. Nitin C, Chao L, Julian M, Narasimha N, Lei Z, Yeonwoong J, Jayan T (2017) Supercapacitors: asymmetric supercapacitor electrodes and devices. Adv Mater 29(21):1605336

  10. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Progress of electrochemical capacitor electrode materials: a review. Int J Hydrog Energy 34(11):4889–4899

    Article  CAS  Google Scholar 

  11. Yang P, Wu Z, Jiang Y, Pan Z, Tian W, Jiang L, Hu L (2018) Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011¯) surface for wearable, all-solid-state supercapacitor. Adv Energy Mater 8(26):1801392

  12. Jiang Y, Song Y, Pan Z, Meng Y, Jiang L, Wu Z, Yang P, Gu Q, Sun D, Hu L (2018) Rapid amorphization in metastable CoSeO3•H2O nanosheets for ultrafast lithiation kinetics. ACS Nano 12(5):5011–5020

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Wu Z, Le J, Pan Z, Yang P, Tian W, Hu L (2018) Freestanding CoSeO3•H2O nanoribbon/Carbon Nanotube Composite Paper for 2.4 V High-Voltage, Flexible, Solid-State Supercapacitors. Nanoscale 10:12003–12010

  14. Pan Z, Jiang Y, Yang P, Wu Z, Tian W, Liu L, Song Y, Gu Q, Sun D, Hu L (2018) In situ growth of layered bimetallic ZnCo hydroxide nanosheets for high-performance all-solid-state pseudocapacitor. ACS Nano 12(3):2968–2979

  15. Jiang Y, Song Y, Li Y, Tian W, Pan Z, Yang P, Li Y, Gu Q, Hu L (2017) Charge transfer in ultrafine LDH nanosheets/graphene interface with superior capacitive energy storage performance. ACS Appl Mater Interfaces 9(43):37645–37654

    Article  CAS  PubMed  Google Scholar 

  16. Su H, Zhang H, Liu F, Chun F, Zhang B, Chu X, Huang H, Deng W, Gu B, Zhang H, Zheng X, Zhu M, Yang W (2017) High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes. Chem Eng J 322:73–81

    Article  CAS  Google Scholar 

  17. Salanne M (2017) Ionic liquids for supercapacitor applications. Top Curr Chem (Cham) 375(3):63

    Article  CAS  Google Scholar 

  18. Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24(36):4924–4955

    Article  CAS  PubMed  Google Scholar 

  19. Rao CNR, Gopalakrishnan K, Govindaraj A (2014) Synthesis, properties and applications of graphene doped with boron, nitrogen and other elements. Nano Today 9(3):324–343

    Article  CAS  Google Scholar 

  20. Wang DW, Li F, Chen ZG, Lu GQ, Chen HM (2008) Synthesis and electrochemical property of boron-doped mesoporous carbon in supercapacitor. Chem Mater 20(22):7195–7200

  21. Thirumal V, Pandurangan A, Jayavel R, Ilangovan R (2016) Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications. Synth Met 220:524–532

    Article  CAS  Google Scholar 

  22. Denisa H, Junya Y, Yasushi S, Hiroaki H, Masaya K (2005) Supercapacitors prepared from melamine-based carbon. Chem Mater 17(5):1241–1247

  23. Kota M, Yu X, Yeon S-H, Cheong H-W, Park HS (2016) Ice-templated three dimensional nitrogen doped graphene for enhanced supercapacitor performance. J Power Sources 303:372–378

    Article  CAS  Google Scholar 

  24. Yu X, Kota M, Park HS (2017) Hierarchical structured, nitrogen-incorporated graphene aerogel for high performance supercapacitor. Macromol Res 25(10):1043–1048

    Article  CAS  Google Scholar 

  25. Nazarian-Samani M, Haghighat-Shishavan S, Nazarian-Samani M, Kim M-S, Cho B-W, Oh S-H, Kashani-Bozorg SF, Kim K-B (2017) Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors. J Power Sources 372:286–296

    Article  CAS  Google Scholar 

  26. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Mullen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  PubMed  Google Scholar 

  27. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  CAS  Google Scholar 

  28. Tamon H, Ishizaka H, Yamamoto T, Suzuki T (1999) Preparation of mesoporous carbon by freeze drying. Carbon 37:2049–2055

  29. Wang C, Liu H, Yang W (2012) An integrated core–shell structured Li3V2(PO4)3@C cathode material of LIBs prepared by a momentary freeze-drying method. J Mater Chem 22(12):5281–5285

  30. Lee YR, Kim SC, Lee H-i, Jeong HM, Raghu AV, Reddy KR, Kim BK (2011) Graphite oxides as effective fire retardants of epoxy resin. Macromol Res 19(1):66–71

    Article  CAS  Google Scholar 

  31. Hu H, Zhao Z, Zhou Q, Gogotsi Y, Qiu J (2012) The role of microwave absorption on formation of graphene from graphite oxide. Carbon 50(9):3267–3273

    Article  CAS  Google Scholar 

  32. Dyatkin B, Gogotsi Y (2014) Effects of structural disorder and surface chemistry on electric conductivity and capacitance of porous carbon electrodes. Faraday Discuss 172:139–162

    CAS  PubMed  Google Scholar 

  33. Wang J, Sun X (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138

    Article  CAS  Google Scholar 

  34. Qian W, Gao Q, Li Z, Tian W, Zhang H, Zhang Q (2017) Unusual mesoporous carbonaceous matrix loading with sulphur as the cathode of lithium sulphur battery with exceptional stable high rate performance. ACS Appl Mater Interfaces 9(34):28366–28376

    Article  CAS  PubMed  Google Scholar 

  35. Zheng L, Wu Z, Zhang M, Yu C, Wang G, Dong Y, Liu S, Wang Y, Qiu J (2016) Sustainable synthesis: sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors. Adv Funct Mater 26(1):111–119

  36. Wu W, Leng J, Mei H, Yang S (2018) Defect-rich, boron-nitrogen bonds-free and dual-doped graphenes for highly efficient oxygen reduction reaction. J Colloid Interface Sci 521:11–16

    Article  CAS  PubMed  Google Scholar 

  37. Liao K, Gao J, Fan J, Mo Y, Xu Q, Min Y (2017) Rod-like polyaniline supported on three-dimensional boron and nitrogen-co-doped graphene frameworks for high-performance supercapacitors. J Nanopart Res 19(12):397

  38. Chen Z, Hou L, Cao Y, Tang Y, Li Y (2018) Gram-scale production of B, N co-doped graphene-like carbon for high performance supercapacitor electrodes. Appl Surf Sci 435:937–944

    Article  CAS  Google Scholar 

  39. Peng Z, Ye R, Mann JA, Zakhidov D, Li Y, Smalley PR, Lin J, Tour JM (2015) Flexible boron-doped laser-induced graphene microsupercapacitors. ACS Nano 9(6):5868–5875

    Article  CAS  PubMed  Google Scholar 

  40. Lee Y-H, Chang K-H, Hu C-C (2013) Differentiate the pseudocapacitance and double-layer capacitance contributions for nitrogen-doped reduced graphene oxide in acidic and alkaline electrolytes. J Power Sources 227:300–308

    Article  CAS  Google Scholar 

  41. Shen B, Guo R, Lang J, Liu L, Liu L, Yan X (2016) A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. J Mater Chem A 4(21):8316–8327

    Article  CAS  Google Scholar 

  42. Song H, Fu J, Ding K, Huang C, Wu K, Zhang X, Gao B, Huo K, Peng X, Chu PK (2016) Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors. J Power Sources 328:599–606

    Article  CAS  Google Scholar 

  43. Schneidermann C, Jaeckel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. Chemsuschem 10(11):2543–2543

    Article  CAS  Google Scholar 

  44. Zhang H, Zhang S, Zhang X (2016) Experimental discovery of magnetoresistance and its memory effect in methylimidazolium-type iron-containing ionic liquids. Chem Mater 28(23):8710–8714

    Article  CAS  Google Scholar 

  45. Y-k A, Kim B, Ko J, You D-J, Yin Z, Kim H, Shin D, Cho S, Yoo J, Kim YS (2016) All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer-ionic liquid electrolyte. J Mater Chem A 4(12):4386–4391

    Article  CAS  Google Scholar 

  46. Lian Y, Ni M, Huang Z, Chen R, Zhou L, Utetiwabo W, Yang W (2019) Polyethylene waste carbons with a mesoporous network towards highly efficient supercapacitors. Chem Eng J 366:313–320

    Article  CAS  Google Scholar 

  47. Zhou Y, Ren J, Xia L, Zheng Q, Liao J, Long E, Xie F, Xu C, Lin D (2018) Waste soybean dreg-derived N/O co-doped hierarchical porous carbon for high performance supercapacitor. Electrochim Acta 284:336–345

    Article  CAS  Google Scholar 

  48. Wang J, Ding B, Xu Y, Shen L, Dou H, Zhang X (2015) Crumpled nitrogen-doped graphene for supercapacitors with high gravimetric and volumetric performances. ACS Appl Mater Interfaces 7(40):22284–22291

    Article  CAS  PubMed  Google Scholar 

  49. Schneidermann C, Jackel N, Oswald S, Giebeler L, Presser V, Borchardt L (2017) Solvent-free mechanochemical synthesis of nitrogen-doped nanoporous carbon for electrochemical energy storage. ChemSusChem 10(11):2416–2424

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2016YFB0100303), Key Research Program of Frontier Sciences (QYZDY-SSW-JSC011), and the National Natural Science Foundation of China (No. 21878308). Prof. Suojiang Zhang (IPE, CAS) is sincerely appreciated for his careful academic guidance and great support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Zhang, J., Xing, C. et al. High energy density supercapacitor based on N/B co-doped graphene nanoarchitectures and ionic liquid electrolyte. Ionics 25, 4351–4360 (2019). https://doi.org/10.1007/s11581-019-02987-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-02987-6

Keywords

Navigation