Variations in anion-exchange membrane properties with ionic resin moisture

Abstract

Moisture content in a strongly hydrophilic ion-exchange resin is one of the key parameters in commercial production of ion-exchange membranes. This work tried to clarify the effect of moisture content in an anion-exchange resin (AER) on the structure and final properties of anion-exchange membranes (AEMs). The AER was modified to 2, 4, 6, and 8% of moisture and then ground. The modified AER was blended with polyethylene and extruded to prepare AEMs, some of which were hot pressed. The microstructure and electrochemical properties of the AEMs were then determined. Variations in electrochemical properties showed no definite moisture effect except ion-exchange capacity, which decreased as AER moisture increased. The differences in changes in electrochemical properties were most apparent between pressed and non-pressed AEMs. Permselectivity and ionic resistance behaved similarly with AEM fixed ion concentration. The ionic resistance decreased with increasing fixed ion concentration. The same was true for permselectivity which is, however, in contradiction to Donnan theory.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Ben Sik Ali M, Mnif A, Hamrouni B, Dhahbi M (2010) Electrodialytic desalination of brackish water: effect of process parameters and water characteristics. Ionics 16:621–629. https://doi.org/10.1007/s11581-010-0441-2

    Article  CAS  Google Scholar 

  2. 2.

    Kaláb J, Palatý Z (2012) Electrodialysis of oxalic acid: batch process modeling. Chem Pap 66:1118–1123. https://doi.org/10.2478/s11696-012-0232-5

    Article  CAS  Google Scholar 

  3. 3.

    Rottiers T, Bruggen V d B, Pinoy L (2017) Production of salicylic acid in a three compartment bipolar membrane electrodialysis configuration. J Ind Eng Chem 54:190–199. https://doi.org/10.1016/j.jiec.2017.05.033

    Article  CAS  Google Scholar 

  4. 4.

    Dlask O, Václavíková N (2018) Electrodialysis with ultrafiltration membranes for peptide separation. Chem Pap 72:261–271. https://doi.org/10.1007/s11696-017-0293-6

    Article  CAS  Google Scholar 

  5. 5.

    Bulejko P, Stránská E, Weinertová K (2017) Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. J Solid State Electrochem 21:111–124. https://doi.org/10.1007/s10008-016-3341-1

    Article  CAS  Google Scholar 

  6. 6.

    Ben Sik Ali M, Mnif A, Hamrouni B (2018) Modelling of the limiting current density of an electrodialysis process by response surface methodology. Ionics 24:617–628. https://doi.org/10.1007/s11581-017-2214-7

    Article  CAS  Google Scholar 

  7. 7.

    Káňavová N, Machuča L, Tvrzník D (2014) Determination of limiting current density for different electrodialysis modules. Chem Pap 68:324–329. https://doi.org/10.2478/s11696-013-0456-z

    CAS  Article  Google Scholar 

  8. 8.

    Weinertova K, Honorato RS, Stranska E, Nedela D (2018) Comparison of heterogeneous anion-exchange membranes for nitrate ion removal from mixed salt solution. Chem Pap 72:469–478. https://doi.org/10.1007/s11696-017-0299-0

    Article  CAS  Google Scholar 

  9. 9.

    Káňavová N, Krejčí A, Benedeková M, Doležel M, Machuča L (2015) Mass transfer examination in electrodialysis using limiting current measurements. Chem Pap 69:553–559. https://doi.org/10.1515/chempap-2015-0062

    CAS  Article  Google Scholar 

  10. 10.

    Singare PU, Lokhande RS (2012) Studies on ion-isotopic exchange reactions using nuclear grade ion exchange resins. Ionics 18:351–357. https://doi.org/10.1007/s11581-011-0645-0

    Article  CAS  Google Scholar 

  11. 11.

    Singare PU (2016) Studies on kinetics and thermodynamics of ion adsorption reactions by applications of short-lived radioactive tracer isotopes. Ionics 22:1433–1443. https://doi.org/10.1007/s11581-016-1651-z

    Article  CAS  Google Scholar 

  12. 12.

    Svoboda M, Beneš J, Vobecká L, Slouka Z (2017) Swelling induced structural changes of a heterogeneous cation-exchange membrane analyzed by micro-computed tomography. J Membr Sci 525:195–201. https://doi.org/10.1016/j.memsci.2016.10.046

    Article  CAS  Google Scholar 

  13. 13.

    Yamanaka T, Takeguchi T, Takahashi H, Ueda W (2009) Water transport during ion conduction in anion-exchange and cation-exchange membranes. J Electrochem Soc 156:B831–B835. https://doi.org/10.1149/1.3129618

    Article  CAS  Google Scholar 

  14. 14.

    Smedley SB, Chang Y, Bae C, Hickner MA (2015) Measuring water hydrogen bonding distributions in proton exchange membranes using linear Fourier transform infrared spectroscopy. Solid State Ionics 275:66–70. https://doi.org/10.1016/j.ssi.2015.03.020

    Article  CAS  Google Scholar 

  15. 15.

    Bulejko P, Stránská E, Weinertová K (2017) Electrochemical and mechanical stability of ion-exchange membranes in alkaline solution. Chem Pap 71:1303–1309. https://doi.org/10.1007/s11696-016-0122-3

    Article  CAS  Google Scholar 

  16. 16.

    Hwang GS, Kaviany M, Gostick JT, Kientiz B, Weber AZ, Kim MH (2011) Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network. Polymer 52:2584–2593. https://doi.org/10.1016/j.polymer.2011.03.056

    Article  CAS  Google Scholar 

  17. 17.

    Li YS, Zhao TS, Yang WW (2010) Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrog Energy 35:5656–5665. https://doi.org/10.1016/j.ijhydene.2010.03.026

    Article  CAS  Google Scholar 

  18. 18.

    Soldatov V, Zelenkovskii V, Kosandrovich E (2016) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. III. The state of the proton and water molecules in hydrogen form of sulfostyrene ion exchangers. React Funct Polym 102:156–164. https://doi.org/10.1016/j.reactfunctpolym.2016.03.001

    Article  CAS  Google Scholar 

  19. 19.

    Soldatov V, Zelenkovskii V, Kosandrovich E (2016) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. II an improved variant of the predominant hydrates model. React Funct Polym 102:147–155. https://doi.org/10.1016/j.reactfunctpolym.2016.03.014

    Article  CAS  Google Scholar 

  20. 20.

    Soldatov VS, Kosandrovich EG, Bezyazychnaya TV (2018) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. IV. The state of ions and water molecules in alkali forms of sulfostyrene resins. React Funct Polym 131:219–229. https://doi.org/10.1016/j.reactfunctpolym.2018.07.010

    Article  CAS  Google Scholar 

  21. 21.

    Soldatov V, Pristavko S, Zelenkovskii V, Kosandrovich E (2013) Hydration of ion exchangers: thermodynamics and quantum chemistry calculations. React Funct Polym 73:737–744. https://doi.org/10.1016/j.reactfunctpolym.2013.03.001

    Article  CAS  Google Scholar 

  22. 22.

    Roy A, Hickner MA, Lee H-S, Glass T, Paul M, Badami A, Riffle JS, McGrath JE (2017) States of water in proton exchange membranes: part a - influence of chemical structure and composition. Polymer 111:297–306. https://doi.org/10.1016/j.polymer.2017.01.021

    Article  CAS  Google Scholar 

  23. 23.

    Herbst DC, Witten TA, Tsai T-H, Coughlin EB, Maes AM, Herring AM (2015) Water uptake profile in a model ion-exchange membrane: conditions for water-rich channels. J Chem Phys 142:114906. https://doi.org/10.1063/1.4914512

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Krisilova EV, Eliseeva TV, Oros GY (2011) Effect of amino acid sorption on formation of water clusters in ion-exchange membranes. Colloid J 73:72–75. https://doi.org/10.1134/S1061933X11010091

    Article  CAS  Google Scholar 

  25. 25.

    Golubenko DV, Safronova EY, Ilyin AB, Shevlyakova NV, Tverskoi VA, Dammak L, Grande D, Yaroslavtsev AB (2017) Influence of the water state on the ionic conductivity of ion-exchange membranes based on polyethylene and sulfonated grafted polystyrene. Mater Chem Phys 197:192–199. https://doi.org/10.1016/j.matchemphys.2017.05.015

    Article  CAS  Google Scholar 

  26. 26.

    Golubenko DV, Safronova EY, Ilyin AB, Shevlyakov NV, Tverskoi VA, Pourcelly G, Yaroslavtsev AB (2017) Water state and ionic conductivity of grafted ion exchange membranes based on polyethylene and sulfonated polystyrene. Mendeleev Commun 27:380–381. https://doi.org/10.1016/j.mencom.2017.07.020

    Article  CAS  Google Scholar 

  27. 27.

    Neděla D, Křivčík J, Válek R, Stránská E, Marek J (2015) Influence of water content on properties of a heterogeneous bipolar membrane. Desalin Water Treat 56:3269–3272. https://doi.org/10.1080/19443994.2014.981412

    CAS  Article  Google Scholar 

  28. 28.

    Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951. https://doi.org/10.1021/cr050182l

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Vandiver MA, Caire BR, Pandey TP, Li Y, Seifert S, Kusoglu A, Knauss DM, Herring AM, Liberatore MW (2016) Effect of hydration on the mechanical properties and ion conduction in a polyethylene-b-poly(vinylbenzyl trimethylammonium) anion exchange membrane. J Membr Sci 497:67–76. https://doi.org/10.1016/j.memsci.2015.09.034

    Article  CAS  Google Scholar 

  30. 30.

    Aindow TT, O’Neill J (2011) Use of mechanical tests to predict durability of polymer fuel cell membranes under humidity cycling. J Power Sources 196:3851–3854. https://doi.org/10.1016/j.jpowsour.2010.12.031

    Article  CAS  Google Scholar 

  31. 31.

    Macauley N, Alavijeh AS, Watson M, Kolodziej J, Lauritzen M, Knights S, Wang G, Kjeang E (2015) Accelerated membrane durability testing of heavy duty fuel cells. J Electrochem Soc 162:F98–F107. https://doi.org/10.1149/2.0671501jes

    Article  CAS  Google Scholar 

  32. 32.

    Collier A, Wang H, Zi Yuan X et al (2006) Degradation of polymer electrolyte membranes. Int J Hydrog Energy 31:1838–1854. https://doi.org/10.1016/j.ijhydene.2006.05.006

    Article  CAS  Google Scholar 

  33. 33.

    Jahnke T, Futter G, Latz A, Malkow T, Papakonstantinou G, Tsotridis G, Schott P, Gérard M, Quinaud M, Quiroga M, Franco AA, Malek K, Calle-Vallejo F, Ferreira de Morais R, Kerber T, Sautet P, Loffreda D, Strahl S, Serra M, Polverino P, Pianese C, Mayur M, Bessler WG, Kompis C (2016) Performance and degradation of proton exchange membrane fuel cells: state of the art in modeling from atomistic to system scale. J Power Sources 304:207–233. https://doi.org/10.1016/j.jpowsour.2015.11.041

    Article  CAS  Google Scholar 

  34. 34.

    Miyatake K, Furuya H, Tanaka M, Watanabe M (2012) Durability of sulfonated polyimide membrane in humidity cycling for fuel cell applications. J Power Sources 204:74–78. https://doi.org/10.1016/j.jpowsour.2011.12.039

    Article  CAS  Google Scholar 

  35. 35.

    Khattra NS, Karlsson AM, Santare MH, Walsh P, Busby FC (2012) Effect of time-dependent material properties on the mechanical behavior of PFSA membranes subjected to humidity cycling. J Power Sources 214:365–376. https://doi.org/10.1016/j.jpowsour.2012.04.065

    Article  CAS  Google Scholar 

  36. 36.

    Bulejko P, Stránská E (2018) The effect of initial moisture content of cation-exchange resin on the preparation and properties of heterogeneous cation-exchange membranes. Mater Chem Phys 205:470–479. https://doi.org/10.1016/j.matchemphys.2017.11.049

    Article  CAS  Google Scholar 

  37. 37.

    Suqing Group: Poly(St-DVB) based gel type strong base anion exchange resins. http://www.suqing.com/Public/Uploads/56027e5bee1ec(1).jpg. Accessed 5 Jan 2019

  38. 38.

    Jeong SK, Lee JS, Woo SH, Seo J, Min B (2015) Characterization of anion exchange membrane containing epoxy ring and C–Cl bond quaternized by various amine groups for application in fuel cells. Energies 8:7084–7099. https://doi.org/10.3390/en8077084

    Article  CAS  Google Scholar 

  39. 39.

    Namdari M, Kikhavani T, Ashrafizadeh SN (2017) Synthesis and characterization of an enhanced heterogeneous cation exchange membrane via nanoclay. Ionics 23:1745–1758. https://doi.org/10.1007/s11581-017-2009-x

    Article  CAS  Google Scholar 

  40. 40.

    Geise GM, Hickner MA, Logan BE (2013) Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl Mater Interfaces 5:10294–10301. https://doi.org/10.1021/am403207w

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Mokhtar M, Dickson SE, Kim Y, Mekky W (2018) Preparation and characterization of ion selective membrane and its application for Cu2+ removal. J Ind Eng Chem 60:475–484. https://doi.org/10.1016/j.jiec.2017.11.035

    Article  CAS  Google Scholar 

  42. 42.

    Hosseini SM, Hamidi AR, Moghadassi AR, Koranian P, Madaeni SS (2015) Fabrication of novel mixed matrix electrodialysis heterogeneous ion-exchange membranes modified by ilmenite (FeTiO3): electrochemical and ionic transport characteristics. Ionics 21:437–447. https://doi.org/10.1007/s11581-014-1186-0

    Article  CAS  Google Scholar 

  43. 43.

    Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interf Sci 119:97–130. https://doi.org/10.1016/j.cis.2005.09.005

    Article  CAS  Google Scholar 

  44. 44.

    Stránská E, Weinertová K, Neděla D, Křivčík J (2018) Preparation and basic characterization of heterogeneous weak acid cation exchange membrane. Chem Pap 72:89–98. https://doi.org/10.1007/s11696-017-0260-2

    Article  CAS  Google Scholar 

  45. 45.

    Křivčík J, Neděla D, Hadrava J, Brožová L (2015) Increasing selectivity of a heterogeneous ion-exchange membrane. Desalin Water Treat 56:3160–3166. https://doi.org/10.1080/19443994.2014.980970

    CAS  Article  Google Scholar 

  46. 46.

    Křivčík J, Neděla D, Válek R (2015) Ion-exchange membrane reinforcing. Desalin Water Treat 56:3214–3219. https://doi.org/10.1080/19443994.2014.981411

    CAS  Article  Google Scholar 

  47. 47.

    ISO 527-3:2018 Plastics - Determination of tensile properties - Part 3: Test conditions for films and sheets

  48. 48.

    Vyas PV, Shah BG, Trivedi GS, Ray P, Adhikary SK, Rangarajan R (2001) Characterization of heterogeneous anion-exchange membrane. J Membr Sci 187:39–46. https://doi.org/10.1016/S0376-7388(00)00613-X

    Article  CAS  Google Scholar 

  49. 49.

    Stránská E, Zárybnická L, Weinertová K, Neděla D, Křivčík J (2016) Anisotropy of Mechanical Properties of Heterogeneous Ion Exchange Membrane (In Czech). Chem Listy 110:498–503. http://www.chemicke-listy.cz/ojs3/index.php/chemicke-listy/article/view/182

  50. 50.

    Kim YS, Einsla B, Sankir M, Harrison W, Pivovar BS (2006) Structure–property–performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications. Polymer 47:4026–4035. https://doi.org/10.1016/j.polymer.2006.02.032

    Article  CAS  Google Scholar 

  51. 51.

    Geise GM, Cassady HJ, Paul DR, Logan BE, Hickner MA (2014) Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys Chem Chem Phys 16:21673–21681. https://doi.org/10.1039/C4CP03076A

    Article  CAS  PubMed  Google Scholar 

  52. 52.

    Geise GM, Falcon LP, Freeman BD, Paul DR (2012) Sodium chloride sorption in sulfonated polymers for membrane applications. J Membr Sci 423–424:195–208. https://doi.org/10.1016/j.memsci.2012.08.014

    Article  CAS  Google Scholar 

  53. 53.

    Komkova EN, Stamatialis DF, Strathmann H, Wessling M (2004) Anion-exchange membranes containing diamines: preparation and stability in alkaline solution. J Membr Sci 244:25–34. https://doi.org/10.1016/j.memsci.2004.06.026

    Article  CAS  Google Scholar 

  54. 54.

    Bauer B, Strathmann H, Effenberger F (1990) Anion-exchange membranes with improved alkaline stability. Desalination 79:125–144. https://doi.org/10.1016/0011-9164(90)85002-R

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was carried out within the framework of the project No. LO1418 “Progressive development of Membrane Innovation Centre” supported by the program NPU I Ministry of Education Youth and Sports of the Czech Republic, using the infrastructure Membrane Innovation Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eliška Stránská.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 448 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulejko, P., Stránská, E. Variations in anion-exchange membrane properties with ionic resin moisture. Ionics 25, 4251–4263 (2019). https://doi.org/10.1007/s11581-019-02984-9

Download citation

Keywords

  • Anion-exchange membrane
  • Moisture
  • Permselectivity
  • Electrical resistance
  • Microstructure